Bachelor of Science (B.Sc.) Subject - Physics Semester - I

Paper (I) - Mechanics & Oscillations (I) (DSC PHY 101, Credits Theory 02, Lectures 30)

Duration of EoSE : 3 hrs.

Max. Marks: 35

Note: There will be two parts in end-semester theory paper.

Part A of the paper shall contain ten short answer questions and the candidate is required to attempt any (7 x 1 mark each = 7 marks) seven questions. Each question will carry 1 mark for correct answer. Part B of the paper will consist of four questions one question from each unit with internal choice. (4 x 7 marks each = 28 marks) Each question will carry 7 marks.

Semester	Code of The Course	Title of The Course/Paper	NHEQF Level	Credits
I	DSC PHY 101	Mechanics & Oscillations (I)	5	02
Level of Course	Type of The Course	Delivery Type of	The Course	
Introductory	Core	Lecture, Thirty Lectures and formative assessments	during lectu	diagnostic
Prerequisites	Physics and Mathema or equivalent.	tics courses of Central Board of	of Secondary	Education
Objectives of The Course :	The objective of the ounderstanding of mere reference, forces, more dynamics. The cours analysing and solving mathematical formalis	course is to provide students of chanics, including the laws of tion of particles and rigid be e aims to develop their kno problems related to these top sm and physical concepts.	with a comp of motion, f odies and ri wledge and vics, using ap	frames of agid body skills in opropriate

Unit - I : Physical Laws & Frames of Reference

(a) Introduction to reference frames, Coordinates transformation Inertial & Non-Inertial frames, Transformation of displacement, velocity, acceleration between different frames of reference involving translation, Galilean transformation & Invariance of Newton's laws. (b) Coriolis Force : Transformation of position, velocity & acceleration in rotating frame, (10 Lectures) Pseudo forces, Coriolis force, Motion relative to earth.

Unit - II : Conservation Laws & Simple Harmonic Motion (SHM)

Conservative Forces : Introduction about Conservative & Non-Conservative forces, Rectilinear motion under conservative forces, Discussion of potential energy curve & Motion of a particle, Introduction about oscillations in a potential well, Simple harmonic motion (SHM).

(06 Lectures)

Unit - III : Centre of Mass Frame

Introduction about centre of mass (CM), Centre of mass frame : Collision of two particles in one & two dimensions (elastic & inelastic), Slowing down of neutrons in a moderator, Motion

Sout 7

of a system with varying mass, Conservation of angular momentum, Charge particle scattering by a nucleus. (07 Lectures)

Unit - IV : Rigid Body Dynamics

Equation of motion of a rotating body, Inertial coefficients, Case of **J** not parallel to $\boldsymbol{\omega}$, Kinetic energy of rotation & idea of principal axis, Calculation of moment of inertia of a disc, spherical shell, hollow & solid spheres, and cylindrical objects (cylindrical shell & solid cylinder) about their symmetric axis through center of mass. **(07 Lectures)**

Reference Books/Text Books

- 1. Mechanics by Charles Kittel, Berkeley Physics Course.
- 2. Introduction to Classical Mechanics by R. G. Takwale, P S. Puranik, TMH.
- 3. Classical Mechanics by Herbert Goldstein, Pearson Education.
- 4. Classical Mechanics by Dr. J. C. Upadhyaya, Himalaya Publishing House.
- 5. Analytical Mechanics by Louis N. Hand, Janet D. Finch, Cambridge University Press.
- 6. Mechanics by L.D. Landau and E. M. Lifshitz, Elsevier.
- 7. An Introduction To Mechanics, D. Kleppner, R. J. Kolenkow, 1973, McGraw-Hill.
- 8. Mechanics, D. S. Mathur, S. Chand and Company Limited.

Suggested E-Resources :

- MIT OpenCourseWare: Classical Mechanics This resource provides lecture notes, problem sets, and solutions for a complete course on classical mechanics: <u>https://ocw.mit.edu/courses/physics/8-01sc-classical-</u> mechanics-fall-2016/
- 2. HyperPhysics This online resource provides concise explanations and interactive simulations for various topics in mechanics: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

Course Learning Outcomes :

By the end of the course, students should be able to:

- 1. Understand the concept of inertial and non-inertial frames of reference and their implications on the laws of motion.
- Apply transformations of displacement, velocity, and acceleration between different frames of reference involving translation.
- 3. Explain the Galilean transformation and the invariance of Newton's laws.
- 4. Analyze the motion in rotating frames, including the transformation of displacement, velocity, and acceleration, and the effects of pseudo forces such as the Coriolis force.
- 5. Analyze the motion of a Foucault pendulum and understand its relation to the rotation of the Earth.
- 6. Define conservative and non-conservative forces and analyze rectilinear motion under conservative forces.
- 7. Analyze potential energy curves and understand the motion of particles under conservative forces.
- 8. Explain the concept of the center of mass and its relevance in the motion of systems of particles.
- 9. Apply the concept of conservation of angular momentum and analyze particle scattering by a nucleus.
- 10. Understand the equations of motion for rotating bodies and the concept of the moment of inertia.
- 11. Analyze the kinetic energy of rotation and the motion of spinning tops.

Bachelor of Science (B.Sc.) Subject - Physics Semester - I

Paper (II) - Electromagnetism (I) (DSC PHY 102, Credits Theory 02, Lectures 30)

Duration of EoSE : 3 hrs.

Max. Marks: 35

Note: There will be two parts in end-semester theory paper.

Part A of the paper shall contain ten short answer questions and the candidate is required to attempt any
seven questions. Each question will carry 1 mark for correct answer. $(7 \times 1 \text{ mark each} = 7 \text{ marks})$ Part B of the paper will consist of four questions one question from each unit with internal choice.
Each question will carry 7 marks. $(4 \times 7 \text{ marks each} = 28 \text{ marks})$

Semester	Code of The Course	Title of The Course/Paper	NHEQF Level	Credits	
I	DSC PHY 102	Electromagnetism (I)	5	02	
Level of Course	Type of The Course	Delivery Type of The Course Lecture, Thirty Lectures including diagnostic and formative assessments during lecture hours.			
Introductory	Core				
Prerequisites	Physics and Mathema or equivalent.	tics courses of Central Board	of Secondary	y Education	
Objectives of The Course :	The objective of the course is to provide students with a comprehensive understanding of the fundamental concepts and principles of electrostatics. It aims to develop their knowledge and skills in analysing scalar and vector fields, electric fields, and their interactions. The course will also cover important topics such as electric potential and polarization.				

Unit - I : Scalar & Vector Fields

Concept of Field, Scalar & Vector fields, Gradient of scalar field, Physical significance & formalism of gradient, Problems based on gradient of a scalar & vector function, Divergence & Curl of a vector field in cartesian coordinates system, Concept of solid angle, Gauss divergence & Stoke's theorem, Gauss law from inverse square law, Differential form of Gauss law. (07 Lectures)

Unit - II : Electric Field & Potential Energy

Potential energy of system of (i) Discrete N-charges (ii) Continuous charge distribution, Energy required to build a uniformly charged sphere, Classical radius of electron, Electric field due to a short electric dipole, Interaction of electric dipole with external uniform & non-uniform electric field, Potential due to a uniformly charged spherical shell, Poisson's & Laplace equations in cartesian coordinates & applications to solve the problems of electrostatics.

(07 Lectures)

Unit - III : Electric Field In Matter

Definition of moments of charge distribution, Multipole expansion, Dielectrics, Induced dipole

9

moments, Polar & Non-polar molecules, Free & bound charges, Polarization, Atomic polarizability, Electric displacement vector, Electric susceptibility, Dielectric constant & (07 Lectures) relations between them.

Unit - IV : Electric Field & Electric Potential In Relation To A Sphere

Electric potential & electric field due to a uniformly polarized sphere (i) Outside the sphere (ii) At the surface of the sphere (iii) Inside the sphere.

Electric field due to a dielectric sphere placed in a uniform electric field (a) Outside the sphere (b) Inside the sphere.

Electric field-due to a charge placed in dielectric medium & Gauss's law, Clausius-Mossotti (09 Lectures) relation in dielectrics.

Reference Books/Text Books

1. Electricity & Magnetism by A.S. Mahajan & Abbas A. Rangwala Tata McGraw-Hill.

- 2. Introduction to Electrodynamics by David J. Griffith, Prentice Hall of India Pvt. Ltd. New Delhi.
- 3. Fundamental University Physics Vol II: Fields and Waves by Alonso/Finn, Addison Wesley Publishers.
- 4. Classical Electrodynamics by J. D. Jackson, Wiley Student Edition.
- 5. Classical Electrodynamics : A Modern Perspective by Kurt Lechner, Springer International Publishing AG.
- 6. Classical Electrodynamics by P. Sengupta, New Age International Publishers.
- 7. Classical Electrodynamics (Revised Edition) by S. P. Puri, Narosa Publishers.

Suggested E-Resources

- 1. MIT OpenCourseWare: Electrostatics This resource offers lecture notes, assignments, and exams for a complete course on electrostatics : https://ocw.mit.edu/courses/physics/8-02sc-physics-ii-electricity-andmagnetism-spring-2011/
- 2. HyperPhysics This online resource provides concise explanations and interactive simulations for various topics in electrostatics and electric fields: http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elefie.html

Course Learning Outcomes:

By the end of the course, students should be able to:

- 1. Understand the concept of scalar and vector fields and their physical significance.
- 2. Demonstrate knowledge of gradient, divergence, and curl operators and their applications in electromagnetism.
- 3. Apply Gauss divergence and Stoke's theorems to analyze electric and magnetic fields.
- 4. Explain the behavior of electric fields and potential energy in different charge distributions.
- 5. Analyze the interaction of electric dipoles with external electric fields and calculate the resulting potentials.
- 6. Solve problems related to Poisson's and Laplace's equations in electrostatics.
- Describe the behavior of electric fields in different types of matter, including dielectrics and polarized spheres. 7.
- Understand the concept of electric displacement, susceptibility, and dielectric constant. 8
- Understand the concept of vector fields and their mathematical representation. Calculate partial derivatives, 9 gradients, and line integrals of scalar and vector fields.
- 10. Apply Gauss's divergence theorem and understand the physical meaning of divergence in Cartesian coordinates. Relate divergence to the concept of solid angle and Gauss's law.
- 11. Apply curl to vector fields and understand its physical significance. Use Stoke's theorem to relate curl to line integrals.
- 12. Manipulate vector identities using the del operator and understand their applications in physics.
- 13. Analyze electrostatic fields and potentials due to discrete charges and continuous charge distributions. Calculate potential energy of systems of charges.
- 14. Apply the concept of electrostatic potential to determine the energy required to build a uniformly charged sphere and the classical radius of an electron.
- 15. Analyze the potential and field due to a short dipole in polar and Cartesian coordinates. Calculate the torque and force on a dipole in an external field.
- 16. Investigate magnetic forces, the measurement of charge in motion, and the invariance of charge. Analyze the electric field measured in different frames of reference.

10

Bachelor of Science (B.Sc.) Subject - Physics Semester - I Physics Practical Lab (I) (DSCP PHY 111, Credits Practical 02, Practical Hours 60)

Max. Practical Marks = 50 Marks Internal Marks = 20 Marks External Practical Exam = 30 Marks (Duration : 3 hrs.)

Note: Out of the following experiments, 8 experiments must be done by the students in the semester. (4 hrs. per week)

Semester	Code of The Course	Title of The Course/Paper	NHEQF Level	Credits	
Ι	DSCP PHY 111	Physics Practical Lab (I)	5	02	
Level of Course	Type of The Course	Delivery Type of	The Course)	
Introductory	Core	Practical, Sixty Hours of diagnostic and formative practical hours.	Practicals assessmer	including nt during	
Prerequisites	Physics and Mathematics courses of Central Board of Secondary Education or equivalent.				
Objectives of The Course :	 To provide hands-on experience in conducting experiments related to electricity and magnetism. To develop practical skills in using various electrical components and instruments. To reinforce theoretical concepts learned in the corresponding lecture course through practical applications. To enhance problem-solving and analytical skills by analysing experimental data and interpreting results. To promote scientific inquiry, critical thinking, and the ability to design and execute experiments. To foster teamwork and collaboration in conducting experimental analysing results. To develop skills in accurately measuring and recording experimental 				

DSCP PHY 111 : Physics Practical Lab (I)

The inclusion of new experiments should be intimated and approved by the Convenor, Board of Studies before the start of the academic session. It is binding to have an experimental set-up of at least ten experiments listed below. In case the number of experiments performed by the student is less than eight, his marks shall be scaled down in the final examination on a pro-rata basis. Laboratory examination paper will be set by the external examiner out of eight or more experiments available at the center.

m

List of Experiments : Semester - I

- 1. To study the variation of power transfer to different loads by a D.C. source and to verify maximum power transfer theorem.
- 2. To determine internal resistance of a D.C. source (source resistance) and to verify the maximum power transfer theorem by studying the dependence of power delivered to the load on load.
- 3. To study the transient behaviour of a RC circuit using a DC source by varying values of R and C.
- 4. To study the characteristics of a semiconductor junction diode and determine forward and reverse resistances.
- 5. To determine the specific resistance of the material of a wire using Carey Foster's bridge.
- 6. To determine the difference between two small resistances using Carey Foster's bridge.
- 7. To convert galvanometer into an ammeter of a given range.
- 8. To convert galvanometer into a voltmeter of a given range.
- 9. To study the resonance frequency of series LCR circuit and hence to determine resonance frequency, quality factor & bandwidth.
- 10. To study the variation of power transfer by two different loads by a D.C. source and to verify the maximum power transfer theorem.
- 11. To study the resonance of parallel LCR circuit and hence to determine resonance frequency, quality factor & bandwidth.
- 12. To determine the Poisson's ratio of the rubber.
- 13. To study the rise and decay of current in an L-R circuit with a source of constant EMF and to determine the time constant.
- 14. To determine the difference between two small resistances using Carey Foster's bridge.
- 15. To study the behaviour of an RC Circuits with varying resistance and capacitance using AC mains as a power source and also to determine the impedance and phase relations.
- 16. To study the rise the decay of current in an LR circuit with a source of constant EMF.
- 17. To study the voltage and current behavior of an LR circuit with an AC power source. Also, determine power factor, impedance and phase relations.
- 18. To study the magnetic field along the axis of a current carrying circular coil, drawing the necessary curve and hence find the radius of the circular coil.
- 19. Any experiment according to undergraduate level physics theory.

Course Learning Outcomes :

By the end of the course, students should be able to:

- 1. Demonstrate proficiency in using various electrical components and instruments required for conducting experiments.
- 2. Apply theoretical concepts of electricity and magnetism to design and execute experiments.
- 3. Analyze experimental data using appropriate mathematical and statistical techniques.
- 4. Interpret experimental results and draw conclusions based on data analysis.
- 5. Develop skills in accurately measuring physical quantities and recording experimental observations.
- 6. Communicate experimental procedures, results, and conclusions effectively in written reports.

Semester - II

Paper (III) - Mechanics & Oscillations (II) (DSC PHY 201, Credits Theory 02, Lectures 30)

Duration of EoSE : 3 hrs.

Max. Marks: 35

Note: There will be two parts in end-semester theory paper.

Part A of the paper shall contain ten short answer questions and the candidate is required to attempt any
seven questions. Each question will carry 1 mark for correct answer.(7 x 1 mark each = 7 marks)Part B of the paper will consist of four questions one question from each unit with internal choice.Each question will carry 7 marks.(4 x 7 marks each = 28 marks)

Semester	Code of The Course	Title of The Course/Paper	NHEQF Level	Credits		
11	DSC PHY 201	Mechanics & Oscillations (II)	5	02		
Level of Course	Type of The Course	Delivery Type of The Course				
Introductory	Core	Lecture, Thirty Lectures including diagnostic and formative assessments during lecture hours.				
Prerequisites	Physics and Mathemator or equivalent.	Physics and Mathematics courses of Central Board of Secondary Education or equivalent.				
Objectives of The Course :	The objective of the course is to provide students with knowledge related to oscillations, damping, coupled oscillators, and properties of materials. The lab aims to reinforce theoretical concepts learned in the classroom, develop conceptual skills, and enhance the understanding of physics principles both through sharpened theoretical skills & experimentation.					

Unit - I : Motion Under Central Forces

Introduction about central forces, Motion under central forces, Gravitational interaction, Inertia and Gravitational mass, General solution under gravitational interaction, Kepler's laws, Discussion of trajectories, Cases of elliptical & circular orbits, Rutherford scattering, Relation between impact parameter & angle of scattering. (08 Lectures)

Unit - II : Simple & Damped Harmonic Oscillations

Spring-mass system, Mass on a spring, Torsional oscillator, LC circuit & Energy of the oscillator, Damped force & motion under damping, Damped simple harmonic oscillator, Power dissipation. (07 Lectures)

Unit - III : Driven Harmonic Oscillations

Exiven harmonic oscillator with damping, Frequency response, Phase relations, Quality factor, Resonance, Series & parallel combinations of LCR circuit. (07 Lectures)

grus

Unit - IV : Coupled Oscillations

Equation of motion of two coupled simple harmonic oscillators, Motion in normal modes, Motion in mixed modes, Transient behaviour, Electrically coupled circuits, Frequency response, Dynamics of a number of oscillators with neighbor interactions. **(08 Lectures)**

References Books/Text Books

- 1. The Physics of Wave and Oscillation by N.K. Bajaj, McGrow Hill Education.
- 2. Vibration and Waves by A. P. French, CBS Publishers.
- 3. Mechanics by Charles Kittel, Berkeley Physics Course.
- 4. Introduction to Classical Mechanics by R. G. Takwale, P S. Puranik, TMH.
- 5. Classical Mechanics by Herbert Goldstein, Pearson Education.
- 6. Classical Mechanics by Dr. J. C. Upadhyaya, Himalaya Publishing House.
- 7. Analytical Mechanics by Louis N. Hand, Janet D. Finch, Cambridge University Press.
- 8. Mechanics by L.D. Landau and E. M. Lifshitz, Elsevier.
- 9. An Introduction To Mechanics, D. Kleppner, R. J. Kolenkow, 1973, McGraw-Hill.
- 10. Mechanics, D. S. Mathur, S. Chand and Company Limited.

Suggested E-Resources :

- MIT OpenCourseWare : Oscillations & Waves This resource provides lecture notes, problem sets, and solutions for a complete course on oscillations & waves : <u>https://ocw.mit.edu/courses/res-8-009-introduction-to-oscillations-and-waves-summer-2017/</u>
- 2. HyperPhysics This online resource provides concise explanations and interactive simulations for various topics in oscillations & waves : <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html</u>

Course Learning Outcomes :

By the end of the course, students should be able to :

- 1. Understand the motion under central forces, including gravitational interaction, and apply Kepler's laws.
- 2. Analyze damped harmonic oscillations and understand the effects of damping on oscillatory motion.
- 3. Analyze driven harmonic oscillators with damping and understand frequency response and power dissipation.
- 4. Explain the behavior of coupled oscillators and analyze systems of oscillators with neighbor interactions.
- 5. Understand the concept of free oscillations and analyze systems with one degree of freedom. Study oscillations in arbitrary potential wells and solve simple harmonic motion problems using complex exponentials.
- 6. Analyze mechanical and electrical systems undergoing oscillatory motion. Calculate the energy of oscillators and examine power dissipation and damping under viscous and solid friction.
- Understand the superposition of two undamped harmonic oscillations and the concept of beats. Analyze the combination of two oscillations at right angles and study anharmonic oscillators using the pendulum as an example.
- 3 Study forced oscillations with damping and harmonic forces. Analyze the effect of varying the resistive term and understand transient phenomena in driven oscillators. Calculate power absorbed by a driven oscillator and examine frequency response, phase relations, and quality factor.
- Explore resonance in electrical oscillations, series and parallel LCR circuits, and electromechanical systems, such as, ballistic galvanometers. Study non-linear effects in electrical devices and acoustic waves.
- 10. Analyze the motion of two coupled simple harmonic oscillators and derive the differential equations for stiffness or capacitance-coupled oscillators. Understand normal modes and motion in mixed modes.
- 11. Study the normal modes of vibration for molecules and electrically coupled circuits.
- 12. Investigate many coupled oscillators, including N-coupled oscillators and longitudinal oscillators.
- Understand the concept of normal modes, calculate normal mode frequencies, and study the motion of monoatomic and diatomic lattices. Explore dispersion relations, group and phase velocities, and the effects of coupling.
- 14. Study the wave equation in one dimension and its solutions for elastic waves in solid rods, gas columns, and transverse waves on a string. Analyze normal modes of a two-dimensional system and waves in two and three dimensions, including spherical waves.
- 15. Understand the reflection and transmission of waves on a string at a boundary, including the reflection and transmission of energy. Analyze impedance matching and standing waves on a string of fixed length.
- 16. Calculate the energy of a vibrating string and analyze the energy in each normal mode.

Smit

Semester - II

Paper (IV) - Electromagnetism (II) (DSC PHY 202, Credits Theory 02, Lectures 30)

Duration of EoSE : 3 hrs.

Max. Marks : 35

Note: There will be two parts in end-semester theory paper.

Part A of the paper shall contain ten short answer questions and the candidate is required to attempt any
seven questions. Each question will carry 1 mark for correct answer.(7 x 1 mark each = 7 marks)Part B of the paper will consist of four questions one question from each unit with internal choice.
Each question will carry 7 marks.(4 x 7 marks each = 28 marks)

Semester	Code of The Course	Title of The Course/Paper	NHEQF Level	Credits	
II	DSC PHY 202	Electromagnetism (II)	5	02	
Level of Course	Type of The Course	Delivery Type of The Course			
Introductory	Core	Lecture, Thirty Lectures and formative assessments	including during lectu	diagnostic ure hours.	
Prerequisites	Physics and Mathematics courses of Central Board of Secondary Education or equivalent.				
Objectives of The Course :	The objective of the course is to provide students with a comprehensive understanding of the fundamental concepts and principles of electromagnetism. It aims to develop their knowledge and skills in analysing scalar and vector fields, electric and magnetic fields, and their interactions, as described by Maxwell's equations. The course will also cover important topics such as electric potential, polarization, magnetostatics and electromagnetic waves				

Unit - I : Magnetostatics

Properties of magnetic field, Lorentz force, Ampere's law, Magnetic field due to a current carrying solid conducting cylinder (a) Outside (b) At the surface & (ii) Inside the cylinder, Ampere's law in differential form, Introduction of magnetic vector potential, Bio-Savart's law & application to magnetic vector potentials. (08 Lectures)

Unit - II : Magnetic Field In Matter

Atomic magnet, Gyromagnetic ratio, Bohr-magneton, Larmor frequency, Induced magnetic moment & diamagnetism, Spin magnetic moment, Para- & ferromagnetism, Intensity of magnetization, Magnetic permeability & susceptibility, Free & bound current densities, Magnetic field due to a uniformly magnetized material & non-uniformly magnetized material.

(09 Lectures)

Unit - III : Maxwell's Equations & Electromagnetic waves (A)

Displacement current, Maxwell's Equations, Electromagnetic wave equation, Electromagnetic waves & properties, Electromagnetic waves in free space & isotropic medium. (06 Lectures)

Unit - IV : Electromagnetic waves (B)

Electromagnetic spectrum, Energy density of electromagnetic waves, Poynting theorem, Radiation pressure & resistance in free space, Electromagnetic waves in dispersive medium.

(07 Lectures)

Reference Books/Text Books

- Electricity & Magnetism by A.S. Mahajan & Abbas A. Rangwala Tata McGraw-Hill.
- 2. Introduction to Electrodynamics by David J. Griffith, Prentice Hall of India Pvt. Ltd. New Delhi.
- 3. Fundamental University Physics Vol II: Fields and Waves by Alonso/Finn, Addison Wesley Publishers.
- 4. Classical Electrodynamics by J. D. Jackson, Wiley Student Edition.
- 5. Classical Electrodynamics : A Modern Perspective by Kurt Lechner, Springer International Publishing AG.
- 6. Classical Electrodynamics by P. Sengupta, New Age International Publishers.
- 7. Classical Electrodynamics (Revised Edition) by S. P. Puri, Narosa Publishers.

Suggested E-Resources :

- MIT OpenCourseWare : Electricity and Magnetism This resource offers lecture notes, assignments, and exams for a complete course on electricity and magnetism: <u>https://ocw.mit.edu/courses/8-03sc-physics-</u> iii-vibrations-and-waves-fall-2016/
- HyperPhysics This online resource provides concise explanations and interactive simulations for various topics in electromagnetism : <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html</u>

Course Learning Outcomes :

By the end of the course, students should be able to :

- 1. Analyze the behavior of magnetic fields in various materials and the effects of currents on magnetic fields.
- 2. Apply Ampere's law and the magnetic vector potential to calculate magnetic fields in different scenarios.
- 3. Explain the properties of electromagnetic waves and their behavior in isotropic and dispersive media.
- 4. Calculate the energy density and radiation pressure of electromagnetic waves.
- 5. Understand the spectrum of electromagnetic waves and its implications.
- Investigate magnetic forces, the measurement of charge in motion, and the invariance of charge. Analyze
 the electric field measured in different frames of reference.
- 7. Understand the magnetic field in free space and matter. Apply Ampère's circuital law and use it in differential form with the vector potential.
- 8. Calculate the magnetic field for different current configurations using the Biot-Savart law and deduce the field of any current-carrying wire.
- 9. Apply transformation relations for electric and magnetic fields between inertial frames.
- 10. Study electric fields in matter, including electrical moments, dipole and quadrupole moments, atomic and molecular dipoles, and dielectrics. Analyze the field of a charge in a dielectric medium and the connection between electric susceptibility and atomic polarizability.
- 11. Investigate electromagnetic induction, Faraday's law, and the effects of conducting rods and loops moving in magnetic fields. Understand the differential and integral forms of Faraday's law.
- 12. Analyze inductance, self-inductance, mutual inductance, and energy stored in inductors and magnetic fields. Understand displacement current and its role in Maxwell's equations.
- 13. Explore Maxwell's equations in differential and integral form, their application in material media, and the boundary conditions for electric and magnetic fields at vacuum-dielectric and vacuum-metal boundaries.

Sher

Semester - II

Physics Practical Lab (II)

(DSCP PHY 211, Credits Practical 02, Practical Hours 60)

Max. Practical Marks = 50 Marks Internal Marks = 20 Marks External Practical Exam = 30 Marks (Duration : 3 hrs.)

Note: Out of the following experiments, 8 experiments must be done by the students in the semester. (4 hrs. per week)

Semester	Code of The Course	Title of The Course/Paper	NHEQF Level	Credits
П	DSCP PHY 211	Physics Practical Lab (II)	5	02
Level of Course	Core	Delivery Type of The Course		
Introductory	Core	Practical, Sixty Hours of diagnostic and formative practical hours.	Practicals assessme	including nt during
Prerequisites	Physics and Mathemator or equivalent.	tics courses of Central Board of	of Secondary	Education
Objectives of The Course :	The objective of the Physics Practical Lab (II), with the mentioned experiments, is to provide students with hands-on experience in conducting experiments related to electricity & magnetism. The lab aims to reinforce theoretical concepts learned in the classroom, develop practical skills, and enhance the understanding of physics principles through experimentation.			

DSCP PHY 211 : Physics Practical Lab (II)

The inclusion of new experiments should be intimated and approved by the Convenor, Board of Studies before the start of the academic session. It is binding to have an experimental setup of at least ten experiments listed below. In case the number of experiments performed by the student is less than eight, his marks shall be scaled down in the final examination on a pro-rata basis. Laboratory examination paper will be set by the external examiner out of eight or more experiments available at the center.

List of Experiments : Semester - II

- 1. To study the random decay and determine the decay constant using the statistical board.
- 2 Using compound pendulum study the variation of time period with amplitude in large angle oscillations.
- 3. To study damping using a compound pendulum/bar pendulum and determine damping coefficient & quality factor of the compound pendulum.

Sent.

- ⁴. To study radius of gyration and to determine acceleration due to gravity (g) using a compound pendulum/bar pendulum.
- 5. To determine Young's modulus by bending of rectangular cross-sectional beam.
- 6. To determine Young's modulus (Y), σ (Poisson's ratio) and η (modulus of rigidity) by Searle's method.
- 7. To determine modulus of rigidity of a wire using Maxwell's needle.
- 8. To study the variation of surface tension with temperature using Jaeger's method.
- 9. To find the motion of a spring and calculate (a) spring constant (b) acceleration due to gravity (g) (c) modulus of rigidity.
- 10. To study the sensitivity of a cathode ray oscilloscope (CRO).
- 11. To convert a given voltmeter to an ammeter of suitable range and calibrate the ammeter.
- 12. To convert a given ammeter (µA to mA) to a voltmeter of suitable range and calibrate the voltmeter.
- 13. To study the Fresnel's & Fraunhoffer's diffraction.
- 14. To determine the moment of Inertia of a fly-wheel.
- 15. To study the motion of a spring and calculate (a) spring constant (b) acceleration due to gravity (g) (c) modulus of rigidity.
- 16. Any experiment according to undergraduate level physics theory.

Course Learning Outcomes :

Through these experiments, students will develop practical skills in experimental techniques, data collection, analysis, and interpretation. They will also enhance their understanding of fundamental concepts and principles in oscillations, damping, coupled oscillators, and material properties. The lab experiences will foster critical thinking, problem-solving abilities, and the application of theoretical knowledge to real-world scenarios.

86ms

- It

Semester - III

Paper (V) - Thermodynamics

(DSC PHY 301, Credits Theory 02, Lectures 30)

Duration of EoSE : 3 hrs.

Max. Marks: 35

Note : There will be two parts in end-semester theory paper. Part A of the paper shall contain ten short answer questions and the candidate is required to attempt any (7 x 1 mark each = 7 marks) seven questions. Each question will carry 1 mark for correct answer. Part B of the paper will consist of four questions one question from each unit with internal choice. Each question will carry 7 marks.

(4 x 7 marks each = 28 marks)

Semester	Code of The Course	Title of The Course/Paper	NHEQF Level	Credits
III	DSC PHY 301	Thermodynamics	6	02
Level of Course	Type of The Course	Delivery Type of T	The <mark>Course</mark>	
Introductory	Core	Lecture, Thirty Lectures including diagnostic and formative assessments during lecture hours.		
Prerequisites	Physics and Mathemat or equivalent.	ics courses of Central Board of	Secondary	Education
Objectives of The Course :	The objective of the course is to provide students with a comprehensive understanding of the fundamental concepts and principles of thermodynamics. It aims to develop their knowledge and skills in analyzing general thermodynamical interactions, theory & application of Clausius-Clapeyron equation, Carnot's theorem, Maxwell relations, production and applications of low temperatures & superconductors.			

Unit - I : General Thermodynamical Interaction

Thermal interaction, Zeroth law of thermodynamics, Helmholtz free energy, Adiabatic interaction & Enthalpy, General interaction & First law of thermodynamics, Infinitesimal general interaction, Gibb's free energy & Phase transitions, Clausius-Clapeyron equation, (09 Lectures) Vapour-pressure curve.

Unit - II : Carnot's Engine & Maxwell's Relations

Heat engine & efficiency of engine, Carnot's cycle & efficiency of Carnot's engine, Refrigerator, Carnot's theorem, Second law of thermodynamics, Thermodynamic scale as an (07 Lectures) absolute scale, Maxwell relations & applications.

Unit - III : Production of Low Temperature

Joule-Thomson expansion & Joule-Thomson coefficients for ideal as well as Van der Waal's gas, Porous-plug experiment, Inversion temperature, Regenerative cooling, Cooling by (07 Lectures) adiabatic expansion & Cooling by demagnetization.

Unit - IV : Applications of Low Temperature & Superconductors

Liquid Helium, He I & He II, Superfluidity, Quest for absolute zero, Nernst's heat theorem,

ent

Qualitative discussion of superconductivity : Introduction to superconductors, Experimental features of superconductivity (Critical temperature, Persistent current, Critical magnetic field, Meissner effect, Type I & Type II superconductors), Isotope effect & Electron-phonon interaction, Applications of superconductors. (07 Lectures)

Reference Books/Text Books

- 1. Thermal Physics by Kittel, San Francisco: W.H. Freeman Publisher.
- 2. Statistical and Thermal Physics by S Lokanathan, R S Gambhir, PHI Learning Publisher.
- 3. Statistical Physics by Berkeley Series Vol. V, McGraw Hill India.
- 4. Fundamentals of Statistical and Thermal Physics by F. Reif, Sarat Book House.
- 5. An Introduction To Thermodynamics by Y. V. C. Rao, Universities Press.
- 6. Thermodynamics : A Complete Undergraduate Course by Andrew M. Steane, OUP Oxford.
- 7. Thermodynamics (Foundations & Applications) by E. P. Gyftopoulos & G. P. Beretta, Dover Publications.

Suggested E-Resources :

- MIT OpenCourseWare: Thermodynamics This resource offers lecture notes, assignments, and exams for a complete course on thermodynamics : https://ocw.mit.edu/courses/5-60-thermodynamics-kinetics-spring-2008/
- 2 HyperPhysics This online resource provides concise explanations and interactive simulations for various topics in thermodynamics : http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

Course Learning Outcomes :

By the end of the course, students should be able to:

- 1. Understand the concept of general interactions in thermodynamics and first law of thermodynamics.
- Demonstrate knowledge of general interactions in thermodynamics, first law in thermodynamics, Helmholtz free energy, Gibb's free energy & Clausius-Clapeyron equation, vapor-pressure curve.
- 3. Understand the concepts of thermal interactions and the zeroth law of thermodynamics.
- 4. Study systems in thermal contact with a heat reservoir, canonical distribution, and energy fluctuations.
- 5. Calculate the entropy of a system in a heat bath and analyze the Helmholtz free energy. Explore adiabatic interactions, enthalpy, and the first law of thermodynamics.
- 6. Study infinitesimal general interactions and Gibb's free energy.
- Explore phase transitions, including first and second-order phase transitions. Understand the Clausius-Clapeyron equation and the vapor pressure curve.
- 8. Analyze the transformation of disorder into order and the efficiency of heat engines, including Carnot's cycle.
- Learn about the thermodynamic scale as an absolute scale and apply Maxwell relations.
 Derive Maxwell's law of distribution of velocities and verify it experimentally. Calculate the most probable,
- average, and root mean square velocities.
- 11. Study diffusion and the equipartition theorem. Explore the classical theory of specific heat capacity and analyze the specific heat of solids.
- 12. Understand transport phenomena, including mean free path, coefficients of viscosity, thermal conductivity, and diffusion.
- 13. Applications of Clausius-Clapeyron equation, first & second law of thermodynamics.
- 14. Explain the concept of Carnot's engine and applications, Maxwell equations and their applications.
- Explain the principle of low temperature production, Joule-Thomson expansion and porous plug experiment.
 Explain the concept of regenerative cooling and applications by adiabatic cooling & colling by demagnetization.
- 17. Applications of low temperature production, He I & He II, superfluidity.
- 18. Applications of superfluidity in superconductors, Meisner effect.
- 19. Study the production of low temperatures and cooling by adiabatic expansion. Analyze the coefficient of performance, Joule-Thomson effect, J-T coefficient, and temperature of inversion.
- 20. Learn about the quest for absolute zero and the third law of thermodynamics.

J.

Semester - III

Paper (VI) - Electronics & Solid State Devices (I) (DSC PHY 302, Credits Theory 02, Lectures 30)

Duration of EoSE: 3 hrs.

Max. Marks : 35

Note: There will be two parts in end-semester theory paper.

Part A of the paper shall contain ten short answer questions and the candidate is required to attempt any
seven questions. Each question will carry 1 mark for correct answer.(7 x 1 mark each = 7 marks)Part B of the paper will consist of four questions one question from each unit with internal choice.
Each question will carry 7 marks.(4 x 7 marks each = 28 marks)

Semester	Code of The Course	Title of The Course/Paper	NHEQF Level	Credits
ш	DSC PHY 302	Electronics & Solid State Devices (I)	6	02
Level of Course	Type of The Course	Delivery Type of The Course		
Introductory	Core	Lecture, Thirty Lectures including diagnostic and formative assessments during lecture hours.		
Prerequisites	Physics and Mathemat or equivalent.	ics courses of Central Board of	Secondary	Education
Objectives of The Course :	The objective of this of understanding of elect develop a strong found various circuit related regulation.	course is to provide students w tronics & solid-state devices. dation in the principles and con network theorems, transistors,	ith a compre The course cepts of elec rectifiers &	ehensive aims to ctronics, voltage

Unit - I : Circuit Analysis

Network - Important definitions, Loop & nodal analysis based on DC & AC circuits (Kirchhoff's Laws), Four terminal network, Current-volt conventions, Open circuit, Short circuit & Hybrid parameters of any four terminals network, Input, output & mutual impedance for an active four terminal network. (06 Lectures)

Unit - II : Network Theorems

Various Circuit Theorems : Superposition theorem, Thevenin theorem, Norton theorem, Reciprocity theorem, Compensation theorem, Maximum power transfer theorem & Miller's theorem. (09 Lectures)

Unit - III : Transistor

Notations & volt-ampere relations for bipolar junction transistor (BJT), Concept of load line & Operating point, Introduction to hybrid parameters of transistors, Common-base (CB), Common-emitter (CE) & Common-collector (CC) configurations of transistors & equivalent circuits, Analysis of transistor amplifiers using hybrid parameters & frequency response.

(09 Lectures)

Sur-

Unit - IV : Rectifiers and Voltage Regulation

Half-wave, Full wave and Bridge rectifiers, Calculation of ripple factor, Efficiency and regulation, Filters : Series inductors, Shunt capacitor, L-sections and π -sections filters, Voltage regulation and Voltage stabilization by Zener diode, Voltage multiplier circuits. (06 Lectures)

Reference Books/Text Books

- 1. Electronics Fundamental and Applications by John D Ryder, Prentice Hall of India Pvt. Ltd, New Delhi.
- 2. Engineering Electronics by John D. Ryder, McGraw Hill Book Company, New Delhi.
- 3. Integrated Electronics, Analog & Digital Circuits and Systems by Millman/Hailkias, McGraw Hill Ltd.
- 4. Digital Computer Electronics by Albert Paul Malvino, Tata McGraw- Hill Pub. Co. Ltd. New Delhi(1983).
- 5. Electronics Fundamental and Applications by John D. Ryder, Prentice Hall of India Pvt. Ltd, New Delhi.
- 6. Engineering Electronics by John D. Ryder, McGraw Hill Book Company, New Delhi.
- 7. Integrated Electronics : Analog & Digital Circuits And systems by Millman/Hailkias : McGraw Hill Ltd.

Suggested E-Resources :

- MIT OpenCourseWare : Electronics This resource offers lecture notes, assignments, and exams for a
 complete course on electronics : <u>https://ocw.mit.edu/search/?q=electronics</u>
- 2 HyperPhysics This online resource provides concise explanations and interactive simulations for various topics in electronics : <u>http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/etroncon.html#c1</u>

Course Learning Outcomes :

By the end of the course, students should be able to:

- 1. Understand the concept of Kirchhoff's first and second laws and their applications in circuits.
- 2. Basic understanding of open and short circuits and their relevance in circuits and applications.
- 3. Understanding of the use and importance of hybrid parameters and their applications in circuits and transistors.
- 4. Understand the concept of network theorems to make circuit analysis easier and lucid.
- 5. Development of understanding of Superposition, Thevenin, Norton, Reciprocity, Compensation and maximum power transfer and miller theorems and their applications.
- 6. Introduction to the concept of bipolar junction transistor.
- 7. Introduction to the concept of loadline, operating point and hybrid parameters for transistors.
- 8. Introduction to the concept of transistor as amplifiers.
- 9. Common base, common emitter & common collector configuration of transistors and their characteristic curves.
- 10. Hybrid parameter concept as applied to transistor amplifiers.
- 11. Frequency response of transistor amplifiers.

Semester - III

Physics Practical Lab (III)

(DSCP PHY 311, Credits Practical 02, Practical Hours 60)

Max. Practical Marks = 50 Marks Internal Marks = 20 Marks External Practical Exam = 30 Marks (Duration : 3 hrs.)

Note: Out of the following experiments, 8 experiments must be done by the students in the semester.

(4 hrs. per week)

Semester	Code of The Course	Title of The Course/Paper	NHEQF Level	Credits
III	DSCP PHY 311	Physics Practical Lab (III)	6	02
Level of Course	Type of The Course	Delivery Type of	The Course	e
Introductory	Core	Practical, Sixty Hours of diagnostic and formative practical hours.	Practicals assessme	including nt during
Prerequisites	Physics and Mathema or equivalent.	tics courses of Central Board of	of Secondary	Education
Objectives of The Course :	The objective of the provide students wir related to optics, th include formation of experiments related to solution. Thermodyna apparatus. Electrical semiconductor & b theoretical concepts I enhance the understan	e physics lab with the mentio th hands-on experience in co- nermodynamics and mechanic 'Newton's rings, use of Mich to prism, grating, biprism, spe amics experiments include Deso experiments include determin allistic galvanometer. The 1 learned in the classroom, devel nding of physics principles thro	ned experin onducting e elson's Inte ecific rotatic orme's meth ation of ba ab aims to lop practical ough experin	nents, is to xperiments xperiments rferometer, on of sugar od & Lee's ndgap of a o reinforce skills, and nentation.

DSCP PHY 311 : Physics Practical Lab (III)

The inclusion of new experiments should be intimated and approved by the Convenor, Board of Studies before the start of the academic session. It is binding to have an experimental set-up of at least ten experiments listed below. In case the number of experiments performed by the student is less than eight, his marks shall be scaled down in the final examination on a pro-rata basis. Laboratory examination paper will be set by the external examiner out of eight or more experiments available at the center.

List of Experiments : Semester - III

- 1. To determine the thermodynamic constant $\gamma = C_P/C_V$ using Clements & Desorme's method.
- 2. To determine the thermal conductivity of a poor thermal conductor by Lee's method.

on

- 3. To study the specific rotation of sugar solution by polarimeter.
- 4. To determine the bandgap of a given semiconductor using a junction diode.
- 5. Using platinum resistance thermometers find the melting point of a given substance.
- 6. Using Newton's rings method find out the wavelength of a monochromatic source.
- 7. To determine the ballistic constant of a ballistic galvanometer (BG).
- 8. To determine the high resistance by leakage method using ballistic galvanometer (BG) and condenser.
- 9. To determine wavelength of light by grating element using a spectrometer.
- 10. To determine the dispersive power of a grating element using spectrometer.
- 11. Using Newton's rings method find out the refractive index of a given liquid.
- 12. Using Michelson's interferometer find out the wavelength of given monochromatic source of light (Sodium light).
- 13. To determine dispersive power of prism using spectrometer.
- 14. To study variation of gain with frequency using a single-stage transistor audio amplifier.
- 15. To verify Lenz's law and study conductor interaction with a bar magnet falling vertically into the hollow metallic cylinder.
- 16. To study modulus of rigidity of a material as a function of temperature.
- 17. To determine the bandgap of a given semiconductor using a junction diode.
- 18. To study variation of gain with frequency using a single-stage transistor audio amplifier.
- 19. Any experiment according to undergraduate level physics theory.

Course Learning Outcomes:

Through these experiments, students will develop practical skills in experimental techniques, data collection, analysis, and interpretation. They will also enhance their understanding of fundamental concepts and principles in optics, electronics & thermodynamics. The lab experiences will foster critical thinking, problem-solving abilities, and the application of theoretical knowledge to real-world scenarios.

B.Sc.

Semester - IV

Paper (VII) - Statistical Physics

(DSC PHY 401, Credits Theory 02, Lectures 30)

Duration of EoSE : 3 hrs.

Max. Marks : 35

Note : There will be two parts in end-semester theory paper.

Part A of the paper shall contain ten short answer questions and the candidate is required to attempt any
seven questions. Each question will carry 1 mark for correct answer. $(7 \times 1 \text{ mark each} = 7 \text{ marks})$
Part B of the paper will consist of four questions one question from each unit with internal choice.
Each question will carry 7 marks. $(4 \times 7 \text{ marks each} = 28 \text{ marks})$

Semester	Code of The Course	Title of The Course/Paper	NHEQF Level	Credits	
IV	DSC PHY 401	Statistical Physics	6	02	
Level of Course	Type of The Course	• Delivery Type of 7	The Course		
Introductory	Core	Lecture, Thirty Lectures including diagnostic and formative assessments during lecture hours.			
Prerequisites	Physics and Mathematics courses of Central Board of Secondary Education or equivalent.				
Objectives of The Course :	The objective of the course is to provide students with a comprehensive understanding of statistical physics inclusive of kinetic theory of gases, transport phenomenon of gases, classical statistics & quantum statistics. The course aims to develop their knowledge and skills in analysing and solving problems related to these topics, using appropriate mathematical formalism and physical concepts.				

Unit - I : Kinetic Theory of Gases

Distribution law of molecular velocities, Most probable, Average & RMS velocities, Energy distribution function, Experimental verification of the Maxwell velocity distribution, Principle of equipartition of energy. (07 Lectures)

Unit - II : Transport Phenomenon of Gases

Transport Phenomenon : Mean free path, Distribution of free paths, Coefficients of viscosity, Thermal conductivity, diffusion & their interrelation. (06 Lectures)

Unit - III : Classical Statistics

Validity of classical approximation, Phase space, micro- & macro-states, Entropy & thermodynamic probability, Monoatomic ideal gas, Barometric equation, Specific heat capacity of diatomic gas, Heat capacity of solids. (08 Lectures)

Unit - IV : Quantum Statistics

Black body radiation & failure of classical statistics, Postulates of quantum statistics, Indistinguishability, Wavefunction & exchange degeneracy, A priori-probability, Bose-Einstein statistics & distribution function, Plank distribution function & radiation formula,

Fermi-Dirac statistics & distribution function, Contact potential, Thermionic emission, Specific heat anomaly of metals, Nuclear spin statistics (Para- & Ortho-hydrogen).

(09 Lectures)

MUL DUNE ELECT

Reference Books/Text Books

- 1. Thermal Physics by Kittel, Publisher: San Francisco: W.H. Freeman.
- 2. Statistical and Thermal Physics by S. Lokanathan& R. S. Gambhir, Publisher: PHI Learning.
- 3. Thermodynamics & Statistical Physics (Hindi) by Dr. Arvind Jain, Devi Ahilya Prakashan.
- 4. Statistical Physics by Berkeley Series Vol. V, Publisher: McGraw Hill India.
- 5. Fundamentals of Statistical and Thermal Physics by F. Reif, Sarat Book House.

Suggested E-Resources :

- 1. MIT OpenCourseWare: Statistical Physics This resource provides lecture notes, problem sets, and solutions for a complete course on statistical physics : <u>https://ocw.mit.edu/search/?q=statistical%20physics</u>
- 2 HyperPhysics This online resource provides concise explanations and interactive simulations for various topics in statistical physics : <u>http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfcn.html</u>

Course Learning Outcomes :

By the end of the course, students should be able to:

- 1. Understand the concept of kinetic theory of gases, energy distribution function & Maxwell's equations.
- 2. Experimental verification of Maxwell velocity distribution & principle of equipartition of energy.
- 3. Explain the transport phenomenon of gases, mean free path, distribution of mean paths, viscosity & diffusion.
- 4. Explanation of thermodynamics in the framework of statistical approach.
- 5. Formulation of classical statistics to form phase space, micro- and macro-spaces, thermodynamic probability, monoatomic ideal gas & heat capacity of solids. Understand classical statistics and its validity. Study phase space, microstates, macrostates, thermodynamic probability, and entropy.
- 6. Formulation of quantum statistics & explanations.
- 7. Postulates of quantum statistics, wavefunction, exchange degeneracy, Bose-Einstein & Fermi-Dirac statistics, Planck distribution function.
- 8. Learn about quantum statistics, including Bose-Einstein and Fermi-Dirac distribution laws. Calculate the thermodynamic functions of weakly and strongly degenerate gases.
- 9. Analyze the behavior of an ideal Bose gas and derive Planck's law.
- 10. Study the flux of radiation energy, radiation pressure, and the thermodynamic functions of an ideal Fermi electron gas.
- 11. Understand the free electron model for metals, the spectrum of metals, Richardson's equation of thermionic emission, relativistic Fermi gas, and the Chandrasekhar mass limit for white dwarf stars.
- 12. Understand the concepts of contact potential & thermionic emission, nuclear spin-states.

A Mark And Rot Market

B.Sc.

Semester - IV

Paper (VIII) – Electronics & Solid State Devices (II) (DSC PHY 402, Credits Theory 02, Lectures 30)

Duration of EoSE : 3 hrs.

Max. Marks : 35

Note : There will be two parts in end-semester theory paper.

Part A of the paper shall contain ten short answer questions and the candidate is required to attempt any
seven questions. Each question will carry 1 mark for correct answer. $(7 \times 1 \text{ mark each} = 7 \text{ marks})$
Part B of the paper will consist of four questions one question from each unit with internal choice.
Each question will carry 7 marks. $(4 \times 7 \text{ marks each} = 28 \text{ marks})$

Semester	Code of The Course	Title of The Course/Paper	NHEQF Level	Credits		
IV	DSC PHY 402	Electronics & Solid State Devices (II)	6	02		
Level of Course	Type of The Course	Delivery Type of The Course				
Introductory	Core	Lecture, Thirty Lectures including diagnostic and formative assessments during lecture hours.				
Prerequisites	Physics and Mathemat or equivalent.	Physics and Mathematics courses of Central Board of Secondary Education or equivalent.				
Objectives of The Course :	The objective of the course is to provide students with a comprehensive understanding of biasing in transistor, oscillators, operational amplifiers, feedback amplifiers, field effect transistors & digital electronics.					

Unit -I

Fixed and emitter biasing, Bias stability in transistor circuits, Feedback requirements for oscillations, Circuit requirement for oscillation, Basis idea of direct coupled and RC coupled amplifiers, Basic oscillator analysis, Colpitt and Hartley oscillators, RC oscillators.

(07 Lectures)

Unit -II

Amplifiers with Feedback : Concept of feedback, Positive and negative feedback, Voltage and current feedback circuits, Advantages of negative feedback- stabilization of gain by negative feedback, Effect of feedback on output and input resistance, Reduction of nonlinear distortion by negative feedback, Effect on gain- frequency response. (07 Lectures)

Unit -III

Operational Amplifier : Differential amplifier, DC levels shifter, Operational amplifier, Input and output impedances, Input offset current, Applications : Unity gain buffer, Adder, Subtractor, Integrator and Differentiator. (07 Lectures)

Unit-IV

Field Effect Transistor and Digital Circuits : Field Effect Transistor (FET) and its

characteristic biasing JFET, AC-operation of JFET and MOSFET, Binary arithmetic, Logic fundamentals AND, OR, NOT, NOR, NAND, XOR gates, Boolean theorems, Transistor as a switch, Logic gates : circuit realization of logic functions, Analog to digital and digital to (09 Lectures) analog analysis, DTL, RTL, TTL circuits.

Reference Books

- 1. Electronics Fundamental and Applications by John D. Ryder, Prentice Hall of India Pvt. Ltd, New Delhi.
- 2. Engineering Electronics by John D. Ryder, McGraw Hill Book Company , New Delhi.
- 3. Integrated Electronics : Analog & Digital Circuits And systems by Millman/Hailkias : McGraw Hill Ltd.
- 4. Digital Computer Electronics by Albert Paul Malvino, Tata McGraw-Hill Pub. Co. Ltd. New Delhi(1983).

Suggested E-Resources :

- 1. MIT OpenCourseWare: Statistical Physics This resource provides lecture notes, problem sets, and solutions for a complete course on statistical physics : <u>https://ocw.mit.edu/search/?q=statistical%20physics</u>
- 2 HyperPhysics This online resource provides concise explanations and interactive simulations for various topics in statistical physics : http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfcn.html

Course Learning Outcomes :

By the end of the course, students should be able to :

- 1. Basic understanding of concept of oscillators.
- 2. Concept and electronics of different types of oscillators of Colpitts and Hartley oscillators, RC oscillators.
- 3. Basic understanding of operational amplifiers, characteristics in form of inverting, non-inverting, adder, buffer and difference amplifiers.
- Basic understanding of applications of operational amplifiers in form of integrator, differentiator, multiplier 4 and divider, voltage to current and current to voltage convertor.
- Concept of feedback and feedback amplifiers, effect on frequency gain response. 5
- Introduction to field effect transistors (FETs), metal-oxide-semiconductor field effect transistors (MOSFET) 6. and voltage-current responses.
- Learning of digital circuits and related theories. 7.

B.Sc. - Physics

Semester - IV

Physics Practical Lab (IV)

(DSCP PHY 411, Credits Practical 02, Practical Hours 60)

Max. Practical Marks = 50 Marks Internal Exam = 20 Marks External Practical Exam (Duration : 3 hrs.) = 30 Marks

Note: Out of the following experiments, 8 experiments must be done by the students in the semester. (4 hrs. per week)

Semester	Code of The Course	Title of The Course/Paper	NHEQF Level	Credits	
IV	DSCP PHY 411	Physics Practical Lab (IV)	6	02	
Level of Course	Type of The Course	Delivery Type of The Course			
Introductory	Core	Practical, Sixty Hours of Practicals including diagnostic and formative assessment during practical hours.			
Prerequisites	Physics and Mathematics courses of Central Board of Secondary Education or equivalent.				
Objectives of The Course :	The objective of the physics lab-IV, with the mentioned experiments, is to provide students with hands-on experience in conducting experiments related to electronics. The lab aims to reinforce theoretical concepts learned in the classroom, develop practical skills, and enhance the understanding of physics principles through experimentation.				

DSCP PHY 411 : Physics Practical Lab (IV)

The inclusion of new experiments should be intimated and approved by the Convenor, Board of Studies before the start of the academic session. It is binding to have an experimental set-up of at least ten experiments listed below. In case the number of experiments performed by the student is less than eight, his marks shall be scaled down in the final examination on a pro-rata basis. Laboratory examination paper will be set by the external examiner out of eight or more experiments available at the center.

List of Experiments : Semester - IV

- 1. To construct a half-wave rectifier using single diode and analysis of ripple factor and efficiency.
- 2. To construct a half-wave rectifier using L & π section filters and analysis of ripple factor and efficiency.
- 3. To construct full wave/bridge rectifiers and analysis of ripple factor and efficiency.

sm >

- 4. To construct full wave/bridge rectifiers using various filter circuits and analysis of ripple factor and efficiency.
- 5. To study characteristics of a given transistor PNP (common emitter, common base and common collector configurations).
- 6. To study characteristics of a given transistor NPN (common emitter, common base and common collector configurations).
- 7. To study analog to digital (A to D) conversion in digital electronics
- 8. To study digital to analog (D to A) conversion in digital electronics.
- 9. To measure the inductance of a coil by Anderson's bridge experiment.
- 10. To study the working of a De-Sauty bridge & to compare the capacitances of two capacitors.
- 11. Plot of thermoemf versus temperature of hot junction constant and determination of neutral temperature using Cu-Fe thermocouple.
- 12. To determine the speed of sound in air by standing wave method using speaker, signal generator, microphone & CRO (2-beam oscilloscope).
- 13. To determine the power factor $(\cos \varphi)$ of a given coil using CRO.
- 14. To determine charge-to-mass ratio (e/m) by Thomson's method.
- 15. To determine the speed of sound in air by standing wave method using speaker, signal generator, microphone & CRO (2-beam oscilloscope).
- 16. Any experiment according to undergraduate level physics theory.

Course Learning Outcomes:

Through these experiments, students will develop practical skills in experimental techniques, data collection, analysis, and interpretation. They will also enhance their understanding of fundamental concepts and principles in electronics. The lab experiences will foster critical thinking, problem-solving abilities, and the application of theoretical knowledge to real-world scenarios.

su l