
1

HTML & CSS

Outline
● Introduction

○ Three Languages for Web Development
○ Coding Principles
○ IDE - Integrated Development Environment
○ Chrome Developer Tools

● HTML
○ All Websites are Documents
○ What is HTML?
○ HTML Syntax
○ Text Blocks and Headlines
○ Empty Elements
○ Links
○ Nested Blocks
○ Comments
○ HTML Document Structure
○ Head
○ Metadata
○ Viewport (optional knowledge)
○ Text Formatting
○ HTML Entities
○ Images
○ Lists
○ Tables
○ Forms
○ Form Input Groups
○ Other Input Elements
○ Action
○ HTML5 Forms (optional knowledge)
○ Block and Inline Elements

● CSS
○ CSS Syntax
○ Comments
○ Colors

DR.YOGI
TextBox
CONTENTS

2

○ CSS Selectors
○ The BEM Naming Convention (optional knowledge)
○ Units
○ Including CSS
○ Specificity Rules
○ The CSS Box Model
○ Responsiveness
○ CSS Flexbox (optional knowledge)
○ Bootstrap

3

Introduction

Three Languages for Web Development
Almost all webpages are built using 3 languages:

● HTML for the structure and content of the website,
● CSS for the layout and design,
● JavaScript to animate, work with data and overall behavior of the site.

Coding Principles

● You don’t need to remember every little rule (you can look that up). But you need
to understand how it works.

● When learning to code, make heavy use of search engines like google.

● RTFM - ‘read the frigging manual’ 😉 - Most popular frameworks have excellent
documentation. Use it!

IDE - Integrated Development Environment
Your IDE (a fancy name for a code editor) is your most important tool.

In this course, you can use any of these:

● Visual Studio Code https://code.visualstudio.com/
● Atom https://atom.io/
● Sublime Text https://www.sublimetext.com/

Chrome Developer Tools
You can look at the HTML and CSS of any website in the Chrome browser by using the
Chrome Developer Tools. You can open them at:

● View > Developer > Developer Tools, or
● Right-click on the website and select Inspect.

We will make use of the Developer Tools throughout the course.

4

HTML

All Websites are Documents
A website is a document, just like any text file or Word document.

It has the file ending *.html

You can create a new file on your laptop and call it mywebsite.html. If you open it, it
will open in your web browser.

Websites on the internet are not much more. They are HTML documents that are saved
on a server, and can be opened in your browser from there.

What is HTML?
HTML stands for: HyperText Markup Language.

It is a structural language, that means it is used for declaring how the document is
structured and which text is displayed.

It is not a programming language, like for example JavaScript. You cannot write logic
with it, like with if and else.

💡 History: HTML was originally created for displaying academic papers and linking
them to each other.

HTML Syntax
HTML describes the structure of a Web page, i.e. what is a text block, what is a headline,
what is a link, and so on. For that, it uses HTML elements. HTML elements tell the
browser how to display the content.

An HTML element always consists of an opening and a closing tag. A tag is written in
pointy brackets. It looks like this:

<p>This is a paragraph</p>

The <p> tag tells the browser: here starts a text block.
Then there is the text, which the browser will show.
Then comes the closing tag: </p> It tells the browser: the text block ends here.

The enclosed text is called the text content (“This is a paragraph” in this example).

5

In addition to the text content, a tag can also have one or multiple attributes. This will
not be shown in the browser, but is used for additional information like styles.

An attribute has a key and a value, of the form: key=”value”.
We will see more about that later.

Image: http://desarrolloweb.dlsi.ua.es/cursos/2011/html5-css3/html-basics

💡 Good to know: W3Schools has a list of all HTML tags. It is a great site to look up
everything about HTML and CSS: https://www.w3schools.com/tags/default.asp

Text Blocks and Headlines
A paragraph in HTML looks like this:

<p>This is a paragraph</p>

Another text block is the <div> block, short for division.

<div>This is a text block</div>

The difference to a <p> block is that it doesn’t have any space before or after.

A headline looks like this:

<h1>This Is A Title</h1>

6

There are six different kinds of headlines, h1 to h6 (largest to smallest):

<h1>Largest Headline</h1>

<h2>Second Largest</h2>

<h3>Third Largest</h3>

<h4>Fourth Largest</h4>

<h5>Fifth Largest</h5>

<h6>Smallest Headline</h6>

Empty Elements
There are elements that are empty, meaning they don’t have a closing tag.

An example is the
 tag, the line break.

<p>Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed
diam nonumy eirmod tempor invidunt ut labore et dolore magna
aliquyam erat, sed diam voluptua.

At vero eos et accusam et justo duo dolores et ea rebum. Stet
clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
dolor sit amet.</p>

The browser will only display line breaks if you put a
 tag into the text. The tag itself
will not be shown.

💡 Optional Knowledge: In the strict version of HTML we need to close every tag,
including empty ones. This means, a line break should actually look like:

Links
Some long time ago, links on websites were called hyperlinks. Nowadays we don’t call
them like this anymore, but this is what gave HTML its name: HyperText Markup
Language. Links are probably the most important feature of HTML.

With links, you can create a clickable link in your document that leads to another
document.

7

If you have mywebsite.html, and another page called about.html, you can create a
link in mywebsite.html that leads to about.html like this:

About

The href attribute specifies the target document where the link should lead to. In this
example, it leads to about.html.

Alternatively, you can also link to an external, public website by specifying the address.

Where I learned HTML

The text in between the <a> tags is the text that the browser will show, the text that will
be clickable. By default, links are displayed blue and underlined.

Nested Blocks
In HTML, tags are usually nested into each other. You might have a div, in which you
have a headline and a text block, in which you have links.

<div>
<h1>My First Website</h1>
<p>
Welcome to my first website. I’m happy that I learned how to

use HTML to write my own websites. Btw, this is
where I learned
HTML.
</p>

</div>

Note that we indent each line according to how it is nested, meaning we add whitespace
at the beginning of the line: the deeper the nesting level the more.

💡 Good to know: In HTML, everything is a block. You have blocks of text, blocks of
images, and blocks of blocks nested into each other. Every block is rectangular, just
the sizes and their arrangement is different. You can imagine tags as boxes: you can
put boxes into boxes into boxes...

8

Comments
In HTML, you can write comments. Comments will not be displayed in the browser. They
are only visible in the source code.

<!-- Survey Form -->
<div class=“container”>...

Comments are often used by developers to put extra information into the HTML code,
like hints about a block of HTML code. This makes it easier to quickly look over a
document and understand what a code block is for.

Comments are also great for debugging HTML, because you can comment out lines of
code, one at a time, to search for errors:

</div>
</div>

<!-- maybe one closing tag too many?
</div>
-->

💡 Good to know: In most editors you can use a shortcode for that: select the text
you wish to comment out and press⌘ + / on a Mac or Ctrl + / on a PC.

9

HTML Document Structure
Each website (= each HTML document) has a basic structure that looks like this:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title></title>

</head>
<body>
...

</body>
</html>

It starts with the document type declaration: <!DOCTYPE html> that explains to the
browser that the document is written in the newest version of HTML: HTML5.

The HTML document itself begins with the opening <html> tag and ends with the
closing </html> tag.

Inside the html tags are the <head> and <body> tags.

The <head> element is a container for metadata about the HTML document. It typically
defines the title of the document, styles, scripts, and other meta information. Metadata
is not displayed.

Everything visible on the webpage is defined between the <body> tags.

💡 Good to know: Browsers are very patient, and try to display anything that you
write in the code. Even if you leave out the <html>, <head> and <body> tags, it will
still display your content. But it might not have the desired results.

In general, the rule applies: Be kind to your browser, and your browser will be kind
to you. Meaning: try to write well-formed HTML and stick to the document
structure. Then you minimize the errors or unexpected results that you get from
your browser.

Head
The <head> part of the HTML document contains metadata and other data that is not
part of the document structure, but has some other function.

A typical head looks like this:

10

<head>
<title>Hamburg Coding School</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="last-modified" content='Mon, 06 Jan 2020 16:23:39 CET'>
<meta name="description" content="Programmier-Kurse, die Spaß machen.">
<meta property="og:title" content="Hamburg Coding School"/>
<meta property="og:description" content="Programmier-Kurse, die Spaß machen."/>
<meta property="og:image" content="https://hamburgcodingschool.com/class-201811.jpg"/>
<meta name="twitter:card" content="summary_large_image">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
<link rel="stylesheet" href="https://hamburgcodingschool.com/css/codingschool.css">
<link rel="shortcut icon" href="/favicon.png">
<style>
h1 { color:red; }
p { color:blue; }

</style>
<script>
window.onload = function() {
if (window.matchMedia("(max-width: 48em)").matches) {
location.hash = "#content-start";

}
}

</script>
</head>

<title> Contains the title of the website = the name that is displayed in the
browser tab.

<meta> Includes meta information that is used for e.g. displaying snippets in
search results or link previews in social media.

<link> Includes CSS into the document, or loads the favicon (shortcut icon).

<style> Defines local CSS styles.

<script> Defines local JavaScript.

Metadata
The <meta> tags contain metadata: data that is not displayed on the page, but is
machine parsable. Meta elements typically contain information about

● page description,
● keywords,
● author of the document,
● last modified or
● thumbnail image.

Metadata is mostly used by search engines or by social media to display snippets with
title, description and a thumbnail image.

11

Viewport (optional knowledge)

Viewport is a special meta tag.

<meta name=”viewport” content=”width=device-width, initial-scale=1.0”>

HTML5 introduced a method to let web designers take control over the viewport,
through the <meta> tag. The viewport is the user's visible area of a web page and varies
with the device (mobile phone, tablet, computer screen).

You should include the <meta> viewport element in all your web pages.

The viewport element gives the browser instructions on how to control the page's
dimensions and scaling:

● The width=device-width part sets the width of the page to follow the
screen-width of the device (which will vary depending on the device).

● The initial-scale=1.0 part sets the initial zoom level when the page is first
loaded.

Here is an example of a web page without the viewport meta tag, and the same web
page with the viewport meta tag:

Without the viewport meta tag With the viewport meta tag

Source: https://www.w3schools.com/css/css_rwd_viewport.asp

12

Text Formatting

HTML brings some tags for structuring and formatting your text.

<p> A paragraph. Adds space before and after the text.

 A line break. Single tag without closing tag.

<div> A box. Unlike <p>, <div> doesn’t add space before or after the text.

<h1> A headline. You can choose from <h1> (largest) to <h6> (smallest).

 Makes the text bold. Inline tag: does not break the text.

<i> Makes the text italic. Inline tag: does not break the text.

<u> Underlines the text. Inline tag: does not break the text.

<small> Makes the text smaller. Inline tag: does not break the text.

🤓Want to know more? There are a lot more tags available. A good cheat sheet
for your overview is this one: https://www.simplehtmlguide.com/cheatsheet.php

HTML Entities
Some characters will not render in HTML. A problem is, for example, if you want to use a
> or a < in your text. Since HTML uses these characters for tags, how can we make it see
it as text content instead? For this, we use HTML entities.

<p>The result is: a > b</p>

The cryptic text > will be rendered as a > character in the text.

Similarly, we have a bunch of other HTML entities. Here is a selection of common ones:

> >

< <

& &

" “

' ‘

€ €

© ©

 non-breaking space

13

Images
To include an image in your HTML, use the tag:

The path to the picture is the path relative to your HTML file.

To define height and width, use the height and width attributes:

You can also define a value for the alt attribute. This is a text that is displayed if the
image is broken. It is also useful for screen readers (if blind people read your website),
and for google image search to list your image.

Preparing pictures for your website
You can use images of various formats, e.g.:

● jpg
● png
● gif
● webp
● svg

If you prepare your picture, make sure it is not too big, because that means it loads
much slower. If you want to display, for example, a profile picture that should be
500x500 pixels wide on your website, the image itself shouldn’t be much larger than
that.

Most retina displays use double the amount of pixels, so it is a good rule of thumb to
make your images double the size of how you want them to include in your HTML
document.

In the example of the 500x500 pixels profile picture, you need to prepare the image so
that it is 1000x1000 pixels wide.

14

SVGs
SVG images are a little different. They are not a pixel-by-pixel image, like JPG and PNG,
but they describe vectors and attributes of the image – they are a vector image.

Due to this characteristic, they are scalable in size. That means that they will always be
focused, no matter how large you make them.

Lists
You can use HTML to make lists. There are two kinds of lists: unordered lists (with bullet
points), and ordered lists (numbered).

Unordered List

HTML
CSS
JavaScript

○ HTML
○ CSS
○ JavaScript

Ordered List

HTML
CSS
JavaScript

1. HTML
2. CSS
3. JavaScript

Different kind of bullet symbols
You can use different kinds of bullet point symbols with the attribute
style="list-style-type:<symbol>;".

<ul style="list-style-type:circle;">
HTML
CSS
JavaScript

○ HTML
○ CSS
○ JavaScript

This actually uses CSS, this means we are adding a style to the list.

15

These symbols exist:

disc (default) ● item

circle ○ item

square ■ item

none item

Different kinds of numbering symbols
Similarly, you can use different kinds of symbols for your numbered list by adding a
type attribute:

<ol type="A">
HTML
CSS
JavaScript

A. HTML
B. CSS
C. JavaScript

These symbols exist:

type="1" (default) 1. First
2. Second
3. Third

type="A" A. First
B. Second
C. Third

type="a" a. First
b. Second
c. Third

type="I" I. First
II. Second

III. Third

type="i" i. First
ii. Second
iii. Third

16

Tables
Tables are an important feature in HTML. You can create a table like this:

<table>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Teacher</th>

</tr>
<tr>
<td>HTML and CSS</td>
<td>27h</td>
<td>Alex Löhn</td>

</tr>
<tr>
<td>Learn to Code</td>
<td>24h</td>
<td>Helder Pereira</td>

</tr>
<tr>
<td>JavaScript for Web</td>
<td>24h</td>
<td>Teresa Holfeld</td>

</tr>
</table>

<table></table> Root element that defines the table.

<tr></tr> Defines a row.

<th></th> Defines a header cell.

<td></td> Defines a cell.

17

Forms
If you want to create a website where the user should type in some data, e.g. login
credentials, you need forms.

<form action="/sign-in.php">
First name:

<input type="text" name="firstname" value="Max">

Last name:

<input type="text" name="lastname" value="Mustermann">

<input type="submit" value="Submit">

</form>

<form></form> Root element that defines the form.

action=”...” The program that is executed when the submit button is pressed.

<input ...> An input field.

type=”text” Attribute for input, creates a text input field.

type=”submit” Attribute for input, creates a button.

name=”...” A name or id for an input field.

value=”...” The default value that is displayed in a field.
In case of the submit button, it is the button label.

Form Input Groups
Form input groups are groups of input fields, e.g. a group of radio buttons,
multiple-choice checkboxes, or a dropdown selection.

Radio Buttons
Radio buttons are round bullet buttons where you can select one of many options.

<form>
<input type="radio" name="role" value="student" checked> Student

<input type="radio" name="role" value="teacher"> Teacher

<input type="radio" name="role" value="administrative"> Administrative

</form>

18

type=”radio” Attribute for input, creates a radio button
(for selecting one of many choices).

name=”...” Name for the input field group. All radio buttons that belong to
the same group should have the same name.

value=”...” An ID for the item. This value is sent to the program where the
data of the form is sent to when the user presses the submit
button.

Checkboxes
Checkboxes are form inputs that the user can select or deselect independently from
each other. They are useful for multiple-choice options.

<form>
<input type="checkbox" name="course" value="html"> HTML & CSS

<input type="checkbox" name="course" value="l2c"> Learn to Code

<input type="checkbox" name="course" value="js4w"> JavaScript for Web

</form>

type=”checkbox” Attribute for input, creates a checkbox.

name=”...” Name for the input field group. All checkboxes that belong to
the same group should have the same name.

value=”...” An ID for the item. This value is sent to the program where the
data of the form is sent to when the user presses the submit
button.

Drop-down Selection
Many sign-up forms use a drop-down selection for the salutation, to know if they should
address someone as Mr. or Mrs.

<form>
<select name="salutation">
<option value="mr">Mr.</option>
<option value="mrs">Mrs.</option>

</select>
</form>

19

<select></select> Creates the selection group for the drop-down menu.

<option></option> Defines one element in the drop-down.

value=”...” An ID for the item. This value is sent to the program where
the data of the form is sent to when the user presses the
submit button.

Other Input Elements
Textarea
A text area is a large input field for free text. You use it whenever the user needs to
write more text that exceeds one line, e.g. a blog post.

<form>
<textarea name="post" rows="10" cols="80">
Your blog post

</textarea>
</form>

Button
A button is an alternative to the <input type=”submit”> field.

<form>
...
<button type=”reset”>Reset fields</button>

</form>

The main difference to the <input type=”submit”> field is that you have more type
options:

<button type=”submit”> Submits the form.
Submit is the default option for a <button>, so you
can leave that attribute off.

<button type=”reset”> Resets all form fields.

<button type=”button”> A click button for a different action that you define
yourself (e.g. with JavaScript).

🤓Want to know more? You can learn about more input types here:
https://www.w3schools.com/html/html_form_input_types.asp

20

Action
Every form should define a form action with the action=”...” attribute. The action
attribute specifies where to send the form-data when a form is submitted.

<form action="/sign-in.php">

In this example, the data that the user typed into the form fields is sent to the
sign-in.php program. It is assumed that the file containing the PHP code exists and is
able to handle the data.

In the course JavaScript for Web you will learn to build your own programs in
JavaScript, which can be used as receiver of form input.

HTML5 Forms (optional knowledge)
HTML5 is a new version of HTML. Here, a lot of helpful tags and attributes were added
to add more functionality to forms, for example:

● Email input type
● Phone number input type
● Date and time input type
● Max length for text input
● Placeholder
● Label
● Built-in form validation
● Email validation
● Required input fields

You can learn more here:

● https://www.html5rocks.com/en/tutorials/forms/html5forms/
● https://www.w3schools.com/html/html_form_attributes.asp

Block and Inline Elements
Remember that <div> tags were breaking the text, while <small> tags were not?

There are two ways in which HTML elements behave in the flow on a line.
It is called the display type.

The two options are: block and inline.

A block-level element always starts on a new line.
Some block level elements are:

21

<article> <blockquote> <div> <fieldset> <form> <h1>-<h6>

<header> <footer> <p> <pre> <table>

An inline element does not start on a new line.
Some frequently used inline elements are:

<a> <button> <small> <i> <u> <label>

 <textarea> <select>

🤓 Optional knowledge: elements are actually not inline, but inline-block.
This is a combination of both. The element behaves like an inline element, but it is
also a block, meaning that you can set both height and width.

Comparison of inline, inline-block and block:

From: https://www.w3schools.com/css/tryit.asp?filename=trycss_inline-block_span1

22

CSS

CSS Syntax
CSS stands for Cascading Style Sheets and describes how HTML elements are to be
displayed in the browser.

Image: http://desarrolloweb.dlsi.ua.es/cursos/2011/html5-css3/css-basics

The selector points to the HTML element you want to style.

The declaration block contains one or more declarations separated by semicolons.

Each declaration includes a CSS property name and a value, separated by a colon (:).

A CSS declaration always ends with a semicolon (;), and declaration blocks are
surrounded by curly braces: { }

Comments
Just as in HTML comments are used to explain the code and may help when you edit the
source code at a later date and are ignored by browsers but the syntax is a bit different.
A CSS comment starts with /* and ends with */. Comments can span multiple lines:

.logo {
height: 32px;
width: 32px;

/* margin: 20px;
Padding: 5px; */
cursor: pointer;

}

23

Colors
Colors in CSS are defined like this:

.logo {
color: red; /* text color */
background-color: #44F25A; /* background color */

}

Color values can be specified in four ways: as color name, hex color, rgb color, or hsl
color.

Color Names
CSS has some predefined names for colors, e.g. red, blue, orange or tomato.

📚 You can look up the complete list here:
https://www.w3schools.com/colors/colors_names.asp

Hex Colors
Hex colors follow the pattern: #rrggbb (red, green, blue)

The values are hexadecimal values between 00 and FF.

📚 Read more: https://www.w3schools.com/colors/colors_hexadecimal.asp

RGB Colors
Here, colors are defined as: rgb(r, g, b) (red, green, blue)

The values are numbers between 0 and 255.

📚 Read more: https://www.w3schools.com/colors/colors_rgb.asp

HSL Colors
This is a different color space where colors are defined by hue, saturation and lightness.

They follow the pattern: hsl(h, s%, l%) (hue, saturation, lightness)

Hue is a number between 0 and 360 (degrees on the color wheel).

Saturation and lightness are a percentage (between 0 and 100).

📚 Read more: https://www.w3schools.com/colors/colors_hsl.asp

💡Note: RGB and HSL colors are not used very often, but you will see hex colors all
the time. It is a good idea to study hex codes and know the most common ones.

24

CSS Selectors
In CSS, a selector is the element before the opening bracket { that defines to which
element(s) the style will be applied.

Tags
Tag selectors look like this:

/* Applies to all <a> elements. */
a {
color: blue;

}

/* Applies to all <p> elements. */
p {
font-size: 12px;

}

Classes
To select a class, you use the dot (.):

/* Applies to all HTML elements that specify class=”blue”. */
.blue {
color: blue;

}

/* All HTML elements that specify class=”small-text”. */
.small-text {
font-size: 9px;

}

25

IDs
To select HTML tags with a certain id, use the hash (#):

/* Applies only to the element with id=”application-submit”. */
#application-submit {
color: blue;
font-weight: bold;
text-transform: uppercase;

}

All Elements
The selector for all elements is the asterisk (*):

/* Applies to all HTML elements. */
* {
font-family: Arial, Helvetica, sans-serif;

}

Combining Selectors
Instead of defining the same style for multiple selectors, you can separate them by
comma (,).

/* Applies to HTML elements of both class=”profile” and
class=”teacher”. */
.profile, .teacher {
font-weight: bold;
font-family: Arial, Helvetica, sans-serif;
margin: 12px;

}

💡 Learn more about selectors and combining them:
https://www.w3schools.com/CSSref/css_selectors.asp

26

The BEM Naming Convention (optional knowledge)
Sometimes it is difficult to give good class names. One strategy is the BEM Naming
Convention that aims to bring consistency into class names.

BEM  -  Block Element Modifier

The pattern works like this:

block__element--modifier

The block is the larger section that you want to display, e.g. a form.

The element is an element of it, e.g. a button.

The modifier specifies a variant of this element, e.g. a highlighted button. It is optional.

In the HTML, this would look like this:

<button class=”form__button--highlighted”>Submit</button>

And in the CSS, this would look like:

.form__button--highlighted {
...

}

💡 Take a deeper dive: http://getbem.com/naming/

Units

For specifying a length, CSS provides a selection of units you can choose from.

You usually use them for width, height, margin, padding or font-size.

Length values are written as a number followed by the unit:

27

.wrapper {
font-size: 1em;
width: 200px;

}

There are two types of units: absolute and relative.

Absolute units:
● px pixels
● pt points
● pc picas (1pc = 12 pt)
● cm centimeters
● mm millimeters
● in inches

In web development, you usually use px for height and width, and pt for font-size.

💡Note: Pixel values (px) are heavily used, but their actual size on the screen
depends on the screen of the device. It is good practice to test your website on
multiple devices and to make the website responsive (see section
“Responsiveness”).

Relative units:
● em Relative to the element’s font size (2em = 2 times the font size)
● rem Relative to the font size of the root element
● vw Relative to 1% of the viewport width
● vh Relative to 1% of the height of the viewport
● vmin Relative to 1% of viewport's smaller dimension
● vmax Relative to 1% of viewport's larger dimension
● % Relative to the parent element
● ex Relative to the x-height of the element’s font (rarely used)
● ch Relative to width of the 0 character (rarely used)

In web development, you will use em, rem, vw and % a lot. The other values you will
rarely encounter.

The viewport is the size of the window in the browser.

💡 Tip: It is good practice to use em and rem a lot. It helps create good responsive
websites. vw is also a useful unit, but has to be tested especially on small devices.

28

Including CSS

There are three ways of inserting a style sheet:

● Inline CSS
● Internal CSS
● External CSS

Inline CSS
CSS is defined in the style attribute of an HTML tag.

<p style=”color: grey; font-size: 12px;”>Lorem ipsum</p>

Internal CSS

The CSS is defined in the <head> part of the HTML document.

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>HTML and CSS Course</title>
<style>
body {
background-color: gold;

}
h1 {
color: #3c3c3c;

}
</style>

</head>
<body>
<h1>HTML and CSS Course</h1>
<p>In this course, we are going to learn ...</p>
...

</body>
</html>

29

External CSS

In external CSS, the styles are defined in its own file and then included via a <link>
element in the <head> of the HTML file.

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>HTML and CSS Course</title>
<link rel="stylesheet" type="text/css" href="courses.css">

</head>
<body>
<h1>HTML and CSS Course</h1>
<p>In this course, we are going to learn ...</p>
...

</body>
</html>

Specificity Rules

In CSS, some styles can overwrite others. For this, CSS applies its specificity rules.

Rule 1: From Top to Bottom

CSS applies its rules from top to bottom. This means that styles that appear later in the
style sheet overwrite the ones that appeared earlier.

Rule 2: IDs over Classes over Tags over Universal

If multiple contradicting styles apply to the same element, the one with the most
importance is choses. The importance hierarchy looks like this:

id > classes > tag > universal selector (*)

Rule 3: Inline CSS over Internal CSS over External CSS

Similarly, if there are styles defined in multiple ways, the more important ones overwrite
the less important ones. The importance hierarchy here looks like this:

inline CSS > internal CSS > external CSS

30

Rule 4: !important trumps everything

If you need to hack your CSS so that your style overwrites the others regardless of the
importance hierarchy, you can use !important.

.highlighted {
background-color: yellow !important;

}

⚠ Attention: !important overwrites everything but is to be used wisely and only
in exceptional cases.

The CSS Box Model

All HTML elements can be considered as boxes. In CSS, the term box model is used
when talking about design and layout.

The CSS box model is essentially a box that wraps around every HTML element. It
consists of margin, border, padding, and the actual content.

The image below illustrates the box model:

(https://www.w3schools.com/css/css_boxmodel.asp)

31

Explanation of the different parts:

● Margin - Clears an area outside the border. The margin is transparent.
● Border - A border that goes around the padding and content.
● Padding - Clears an area around the content. The padding is transparent.
● Content - The content of the box, where text and images appear.

The box model allows us to add a border around elements, and to define space
between elements.

Responsiveness
A website is responsive if it is suitable for all screen sizes, even for small mobile screens.

For making a website responsive, we can use media queries.

Media queries are styles wrapped in a @media block that defines for which screen size
this style applies.

// Small devices (landscape phones, 576px and up)
@media (min-width: 576px) { ... }

// Medium devices (tablets, 768px and up)
@media (min-width: 768px) { ... }

// Large devices (desktops, 992px and up)
@media (min-width: 992px) { ... }

// Extra large devices (large desktops, 1200px and up)
@media (min-width: 1200px) { ... }

The style without the media query is the smallest and the default style. The style inside
the media query is the one for the larger screens and will overwrite the default style if
the screen where the website is displayed is larger than specified.

CSS Flexbox (optional knowledge)
Flexbox is a set of CSS properties that help to align items in columns on a website.

In flexbox, the outer box is called the container.

The inner boxes, the columns, if you will, are called the items.

To make it work, you put this style on the container element:

32

.container {
display: flex;

}

The flex direction specifies if the items will be aligned in a row or as a column (one
below the other). This is specified on the container element as well:

.container {
display: flex;
flex-direction: row;

}

Possible values are: row, column, row-reverse, column-reverse.

📚 Learn more: You can specify much more for the container and items. A good
cheat sheet with visual aids is this:
https://css-tricks.com/snippets/css/a-guide-to-flexbox/

Bootstrap
Bootstrap is a library for CSS, HTML and JavaScript. It provides a lot of functionality, and
predefined CSS styles that make a website look nice.

https://getbootstrap.com/

33

Glossary

HTML HyperText Markup Language

CSS Cascading Style Sheets

RTFM Read The Frigging Manual 😉

IDE Integrated Development Environment,
fancy name for a code editor like Visual Studio Code

Developer Tools Feature of the Chrome browser to look at HTML, CSS and
other things.

syntax The structure of a programming language or markup
language. Tells you how to write in that language, e.g. in
HTML you put tags in < and >.

tag In HTML, a tag is an HTML element, e.g. <p>. It is the one in
these brackets: < >.

paragraph A paragraph is a text block.

hyperlinks A link that leads from one website to another.

metadata Data or information about the document. Any data that is
not the content itself. In HTML, useful metadata are the
author or a description.

viewport A special metadata tag that helps to display content for
mobile screens.

entity Pieces of text that are used to display reserved characters
(like “<”) or characters you don’t find on your keyboard (like
“æ” or “Ω”). The more frequently used have easy to
remember names like ♠ for ♠ and € for €.
They always start with an ampersand and end with a
semicolon.

Lorem ipsum ... Dummy text.

34

SVG An image format where the image is not saved in pixels,
but with vectors. Vector images don’t have a resolution and
can be enhanced without limits.

Unordered list A list with bullet points.

Ordered list A list with numbers.

input A form field

radio button A group of items with round buttons where you can select
only one.

block-level
element

An HTML element that is displayed as a block, meaning it
will break surrounding text.

inline element An HTML element that is displayed inline, meaning it will
not break surrounding text.

selector In CSS: the item that specifies the tag, class or id to which
the style should be applied. In this example, the .blue class:

.blue {
color: blue;

}

hex color Color value in the format: #rrggbb

rgb color Color value in the format: rgb(r, g, b)

hsl color Color value in the format:
hsl(hue, saturation%, lightness%)

BEM Block - Element - Modifier
A naming convention for CSS classes.

specificity The order of importance in which CSS styles are processed
and overwrite each other.

CSS box model The box model is a model that shows where margin,
border, padding and content of an HTML element are
located.

35

responsive A website is responsive if it works well on both large and
small screens.

media query A media query is a special CSS element that defines for
which screen size a style should be applied.
Of the format:
@media (min-width: 576px) {
...

}

Flexbox A set of CSS properties for arranging items in a container in
a certain way. Useful for implementing responsive
websites.

Bootstrap A set of libraries for HTML, CSS and JavaScript.
https://getbootstrap.com/

36

Useful Links

HTML
W3Schools: https://www.w3schools.com/html/
Many of this handout’s examples stem from here. Thank you, w3schools! 🙏

MDN: https://developer.mozilla.org/de/docs/Web/HTML

SelfHTML: https://www.selfhtml.org/

Boilerplates: https://amp.dev/boilerplate/

Overview of the most used HTML elements with short explanations:
https://www.advancedwebranking.com/html/

Placeholder Bilder: http://placekitten.com/, https://www.fillmurray.com

CSS
W3Schools: https://www.w3schools.com/css/

To exercise and test your CSS Knowledge: https://flukeout.github.io/

BEM Naming Convention: http://getbem.com/naming/

Flexbox: http://flexbox.help/

Flexbox Generator: https://loading.io/flexbox/

Learn flexbox by playing: http://flexboxfroggy.com/

The complete guide to flexbox: https://css-tricks.com/snippets/css/a-guide-to-flexbox/

Bootstrap: https://getbootstrap.com

Browser support: https://caniuse.com/

JAVASCRIPT Notes

Page 1

JAVASCRIPT

JavaScript is the scripting language of the Web.

JavaScript is used in millions of Web pages to add functionality, validate forms, detect browsers, and
much more.

Introduction to JavaScript

JavaScript is used in millions of Web pages to improve the design, validate forms, detect browsers, create
cookies, and much more.

JavaScript is the most popular scripting language on the Internet, and works in all major browsers, such as
Internet Explorer, Mozilla Firefox, and Opera.

What is JavaScript?

 JavaScript was designed to add interactivity to HTML pages
 JavaScript is a scripting language
 A scripting language is a lightweight programming language
 JavaScript is usually embedded directly into HTML pages
 JavaScript is an interpreted language (means that scripts execute without preliminary compilation)
 Everyone can use JavaScript without purchasing a license

Java and JavaScript are two completely different languages in both concept and design!

Java (developed by Sun Microsystems) is a powerful and much more complex programming language - in
the same category as C and C++.

What can a JavaScript Do ?

 JavaScript gives HTML designers a programming tool - HTML authors are normally not
programmers, but JavaScript is a scripting language with a very simple syntax! Almost anyone can
put small "snippets" of code into their HTML pages

 JavaScript can put dynamic text into an HTML page - A JavaScript statement like this:
document.write("<h1>" + name + "</h1>") can write a variable text into an HTML page

 JavaScript can react to events - A JavaScript can be set to execute when something happens,
like when a page has finished loading or when a user clicks on an HTML element

 JavaScript can read and write HTML elements - A JavaScript can read and change the content
of an HTML element

 JavaScript can be used to validate data - A JavaScript can be used to validate form data before
it is submitted to a server. This saves the server from extra processing

 JavaScript can be used to detect the visitor's browser - A JavaScript can be used to detect the
visitor's browser, and - depending on the browser - load another page specifically designed for that
browser

JAVASCRIPT Notes

 Page 2

 JavaScript can be used to create cookies - A JavaScript can be used to store and retrieve
information on the visitor's computer.

JavaScript Variables

Variables are "containers" for storing information.

JavaScript variables are used to hold values or expressions.

A variable can have a short name, like x, or a more descriptive name, like carname.

Rules for JavaScript variable names:

 Variable names are case sensitive (y and Y are two different variables)
 Variable names must begin with a letter or the underscore character

Note: Because JavaScript is case-sensitive, variable names are case-sensitive.

Example

A variable's value can change during the execution of a script. You can refer to a variable by its name to
display or change its value.

<html>
<body>
<script type="text/javascript">
var firstname;
firstname="Welcome";
document.write(firstname);
document.write("
");
firstname="XYZ";
document.write(firstname);
</script>

<p>The script above declares a variable,
assigns a value to it, displays the value, change the value,
and displays the value again.</p>

</body>
</html>

Output :
Welcome
XYZ

The script above declares a variable, assigns a value to it, displays the value, change the value, and
displays the value again.

JAVASCRIPT Notes

 Page 3

Declaring (Creating) JavaScript Variables

Creating variables in JavaScript is most often referred to as "declaring" variables.

You can declare JavaScript variables with the var statement:

var x;
var carname;

After the declaration shown above, the variables are empty (they have no values yet).

However, you can also assign values to the variables when you declare them:

var x=5;
var carname="Scorpio";

After the execution of the statements above, the variable x will hold the value 5, and carname will hold
the value Scorpio.

Note: When you assign a text value to a variable, use quotes around the value.

Assigning Values to Undeclared JavaScript Variables

If you assign values to variables that have not yet been declared, the variables will automatically be
declared.

These statements:

x=5;
carname="Scorpio";

have the same effect as:

var x=5;
var carname="Scorpio";

Redeclaring JavaScript Variables

If you redeclare a JavaScript variable, it will not lose its original value.

var x=5;
var x;

JAVASCRIPT Notes

 Page 4

After the execution of the statements above, the variable x will still have the value of 5. The value of x is
not reset (or cleared) when you redeclare it.

JAVASCRIPT Notes

Page 5

DataTypes

 Numbers - are values that can be processed and calculated. You don't enclose them in quotation
marks. The numbers can be either positive or negative.

 Strings - are a series of letters and numbers enclosed in quotation marks. JavaScript uses the string
literally; it doesn't process it. You'll use strings for text you want displayed or values you want
passed along.

 Boolean (true/false) - lets you evaluate whether a condition meets or does not meet specified
criteria.

 Null - is an empty value. null is not the same as 0 -- 0 is a real, calculable number, whereas null is
the absence of any value.

Data Types

TYPE EXAMPLE

Numbers Any number, such as 17, 21, or 54e7

Strings "Greetings!" or "Fun"

Boolean Either true or false

Null A special keyword for exactly that – the null value (that is, nothing)

JavaScript Arithmetic

As with algebra, you can do arithmetic operations with JavaScript variables:

y=x-5;
z=y+5;

JavaScript Operators

The operator = is used to assign values.

The operator + is used to add values.

The assignment operator = is used to assign values to JavaScript variables.

The arithmetic operator + is used to add values together.

y=5;
z=2;
x=y+z;

JAVASCRIPT Notes

 Page 6

The value of x, after the execution of the statements above is 7.

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic between variables and/or values.

Given that y=5, the table below explains the arithmetic operators:

Operator Description Example Result

+ Addition x=y+2 x=7

- Subtraction x=y-2 x=3

* Multiplication x=y*2 x=10

/ Division x=y/2 x=2.5

% Modulus (division remainder) x=y%2 x=1

++ Increment x=++y x=6

-- Decrement x=--y x=4

JavaScript Assignment Operators

Assignment operators are used to assign values to JavaScript variables.

Given that x=10 and y=5, the table below explains the assignment operators:

Operator Example Same As Result

= x=y x=5

+= x+=y x=x+y x=15

-= x-=y x=x-y x=5

= x=y x=x*y x=50

/= x/=y x=x/y x=2

%= x%=y x=x%y x=0

The + Operator Used on Strings

The + operator can also be used to add string variables or text values together.

To add two or more string variables together, use the + operator.

txt1="What a very";
txt2="nice day";
txt3=txt1+txt2;

JAVASCRIPT Notes

 Page 7

After the execution of the statements above, the variable txt3 contains "What a verynice day".

To add a space between the two strings, insert a space into one of the strings:

txt1="What a very ";
txt2="nice day";
txt3=txt1+txt2;

or insert a space into the expression:

txt1="What a very";
txt2="nice day";
txt3=txt1+" "+txt2;

After the execution of the statements above, the variable txt3 contains:

"What a very nice day"

Adding Strings and Numbers

Look at these examples:

x=5+5;
document.write(x);

x="5"+"5";
document.write(x);

x=5+"5";
document.write(x);

x="5"+5;
document.write(x);

The rule is:

If you add a number and a string, the result will be a string.

JavaScript Comparison and Logical Operators

Comparison and Logical operators are used to test for true or false.

JAVASCRIPT Notes

 Page 8

Comparison Operators

Comparison operators are used in logical statements to determine equality or difference between variables
or values.

Given that x=5, the table below explains the comparison operators:

Operator Description Example

== is equal to x==8 is false

=== is exactly equal to (value and type) x===5 is true
x==="5" is false

!= is not equal x!=8 is true

> is greater than x>8 is false

< is less than x<8 is true

>= is greater than or equal to x>=8 is false

<= is less than or equal to x<=8 is true

How Can it be Used

Comparison operators can be used in conditional statements to compare values and take action depending
on the result:

if (age<18) document.write("Too young");

You will learn more about the use of conditional statements in the next chapter of this tutorial.

Logical Operators

Logical operators are used to determine the logic between variables or values.

Given that x=6 and y=3, the table below explains the logical operators:

Operator Description Example

&& and (x < 10 && y > 1) is true

|| or (x==5 || y==5) is false

! not !(x==y) is true

Conditional Operator

JavaScript also contains a conditional operator that assigns a value to a variable based on some condition.

JAVASCRIPT Notes

 Page 9

Syntax

variablename=(condition)?value1:value2

Example

greeting=(visitor=="PRES")?"Dear President ":"Dear ";

If the variable visitor has the value of "PRES", then the variable greeting will be assigned the value
"Dear President " else it will be assigned "Dear".

Conditional Statements

Very often when you write code, you want to perform different actions for different decisions. You can
use conditional statements in your code to do this.

In JavaScript we have the following conditional statements:

 if statement - use this statement if you want to execute some code only if a specified condition is
true

 if...else statement - use this statement if you want to execute some code if the condition is true
and another code if the condition is false

 if...else if....else statement - use this statement if you want to select one of many blocks of code to
be executed

 switch statement - use this statement if you want to select one of many blocks of code to be
executed

If Statement

You should use the if statement if you want to execute some code only if a specified condition is true.

Syntax

if (condition)
{
code to be executed if condition is true
}

Note that if is written in lowercase letters. Using uppercase letters (IF) will generate a JavaScript error!

Example 1

<script type="text/javascript">
//Write a "Good morning" greeting if
//the time is less than 10
var d=new Date();
var time=d.getHours();

JAVASCRIPT Notes
 Page 10

if (time<10)
{
document.write("Good morning");
}
</script>

Example 2

<script type="text/javascript">
//Write "Lunch-time!" if the time is 11
var d=new Date();
var time=d.getHours();

if (time==11)
{
document.write("Lunch-time!");
}
</script>

Note: When comparing variables you must always use two equals signs next to each other (==)!

Notice that there is no ..else.. in this syntax. You just tell the code to execute some code only if the
specified condition is true.

If...else Statement

If you want to execute some code if a condition is true and another code if the condition is not true, use
the if....else statement.

Syntax

if (condition)
{
code to be executed if condition is true
}
else
{
code to be executed if condition is not true
}

Example

<script type="text/javascript">
//If the time is less than 10,
//you will get a "Good morning" greeting.
//Otherwise you will get a "Good day" greeting.
var d = new Date();

JAVASCRIPT Notes
 Page 11

var time = d.getHours();

if (time < 10)
{
document.write("Good morning!");
}
else
{
document.write("Good day!");
}
</script>

If...else if...else Statement

You should use the if....else if...else statement if you want to select one of many sets of lines to execute.

Syntax

if (condition1)
{
code to be executed if condition1 is true
}
else if (condition2)
{
code to be executed if condition2 is true
}
else
{
code to be executed if condition1 and
condition2 are not true
}

Example

<script type="text/javascript">
var d = new Date()
var time = d.getHours()
if (time<10)
{
document.write("Good morning");
}
else if (time>10 && time<16)
{
document.write("Good day");
}
else

JAVASCRIPT Notes
Page 12

{
document.write("Hello World!");
}
</script>

The JavaScript Switch Statement

You should use the switch statement if you want to select one of many blocks of code to be executed.

Syntax

switch(n)
{
case 1:
 execute code block 1
 break;
case 2:
 execute code block 2
 break;
default:
 code to be executed if n is
 different from case 1 and 2
}

This is how it works: First we have a single expression n (most often a variable), that is evaluated once.
The value of the expression is then compared with the values for each case in the structure. If there is a
match, the block of code associated with that case is executed. Use break to prevent the code from
running into the next case automatically.

Example

<script type="text/javascript">
//You will receive a different greeting based
//on what day it is. Note that Sunday=0,
//Monday=1, Tuesday=2, etc.
var d=new Date();
theDay=d.getDay();
switch (theDay)
{
case 5:
 document.write("Finally Friday");
 break;
case 6:
 document.write("Super Saturday");
 break;
case 0:
 document.write("Sleepy Sunday");

JAVASCRIPT Notes
Page 13

 break;
default:
 document.write("I'm looking forward to this weekend!");
}
</script>

JavaScript Controlling(Looping) Statements

Loops in JavaScript are used to execute the same block of code a specified number of times or while
a specified condition is true.

JavaScript Loops

Very often when you write code, you want the same block of code to run over and over again in a row.
Instead of adding several almost equal lines in a script we can use loops to perform a task like this.

In JavaScript there are two different kind of loops:

 for - loops through a block of code a specified number of times
 while - loops through a block of code while a specified condition is true

The for Loop

The for loop is used when you know in advance how many times the script should run.

Syntax

for (var=startvalue;var<=endvalue;var=var+increment)
{
 code to be executed
}

Example

Explanation: The example below defines a loop that starts with i=0. The loop will continue to run as long
as i is less than, or equal to 10. i will increase by 1 each time the loop runs.

Note: The increment parameter could also be negative, and the <= could be any comparing statement.

<html>
<body>
<script type="text/javascript">
var i=0;
for (i=0;i<=10;i++)
{

JAVASCRIPT Notes

 Page 14

document.write("The number is " + i);
document.write("
");
}
</script>
</body>
</html>

Result

The number is 0
The number is 1
The number is 2
The number is 3
The number is 4
The number is 5
The number is 6
The number is 7
The number is 8
The number is 9
The number is 10

JavaScript While Loop

Loops in JavaScript are used to execute the same block of code a specified number of times or while
a specified condition is true.

The while loop

The while loop is used when you want the loop to execute and continue executing while the specified
condition is true.

while (var<=endvalue)
{
 code to be executed
}

Note: The <= could be any comparing statement.

Example

Explanation: The example below defines a loop that starts with i=0. The loop will continue to run as long
as i is less than, or equal to 10. i will increase by 1 each time the loop runs.

<html>

JAVASCRIPT Notes

 Page 15

<body>
<script type="text/javascript">
var i=0;
while (i<=10)
{
document.write("The number is " + i);
document.write("
");
i=i+1;
}
</script>
</body>
</html>

Result

The number is 0
The number is 1
The number is 2
The number is 3
The number is 4
The number is 5
The number is 6
The number is 7
The number is 8
The number is 9
The number is 10

The do...while Loop

The do...while loop is a variant of the while loop. This loop will always execute a block of code ONCE,
and then it will repeat the loop as long as the specified condition is true. This loop will always be
executed at least once, even if the condition is false, because the code is executed before the condition is
tested.

do
{
 code to be executed
}
while (var<=endvalue);

Example

<html>
<body>
<script type="text/javascript">

JAVASCRIPT Notes
 Page 16

var i=0;
do
{
document.write("The number is " + i);
document.write("
");
i=i+1;
}
while (i<0);
</script>
</body>
</html>

Result

The number is 0

JavaScript Break and Continue

There are two special statements that can be used inside loops: break and continue.

JavaScript break and continue Statements

There are two special statements that can be used inside loops: break and continue.

Break

The break command will break the loop and continue executing the code that follows after the loop (if
any).

Example

<html>
<body>
<script type="text/javascript">
var i=0;
for (i=0;i<=10;i++)
{
if (i==3)
{
break;
}
document.write("The number is " + i);
document.write("
");
}
</script>
</body>

JAVASCRIPT Notes

 Page 17

</html>

Result

The number is 0
The number is 1
The number is 2

Continue

The continue command will break the current loop and continue with the next value.

Example

<html>
<body>
<script type="text/javascript">
var i=0
for (i=0;i<=10;i++)
{
if (i==3)
{
continue;
}
document.write("The number is " + i);
document.write("
");
}
</script>
</body>
</html>

Result

The number is 0
The number is 1
The number is 2
The number is 4
The number is 5
The number is 6
The number is 7
The number is 8
The number is 9
The number is 10

JAVASCRIPT Notes

 Page 18

JavaScript Functions

A function (also known as a method) is a self-contained piece of code that performs a particular
"function". You can recognise a function by its format - it's a piece of descriptive text, followed by open
and close brackets.A function is a reusable code-block that will be executed by an event, or when the
function is called.

To keep the browser from executing a script when the page loads, you can put your script into a function.

A function contains code that will be executed by an event or by a call to that function.

You may call a function from anywhere within the page (or even from other pages if the function is
embedded in an external .js file).

Functions can be defined both in the <head> and in the <body> section of a document. However, to
assure that the function is read/loaded by the browser before it is called, it could be wise to put it in the
<head> section.

Example

<html>
<head>
<script type="text/javascript">
function displaymessage()
{
alert("Hello World!");
}
</script>
</head>
<body>
<form>
<input type="button" value="Click me!"
onclick="displaymessage()" >
</form>
</body>
</html>

If the line: alert("Hello world!!") in the example above had not been put within a function, it would have
been executed as soon as the line was loaded. Now, the script is not executed before the user hits the
button. We have added an onClick event to the button that will execute the function displaymessage()
when the button is clicked.

JAVASCRIPT Notes

Page 19

You will learn more about JavaScript events in the JS Events chapter.

How to Define a Function

The syntax for creating a function is:

function functionname(var1,var2,...,varX)
{
some code
}

var1, var2, etc are variables or values passed into the function. The { and the } defines the start and end of
the function.

Note: A function with no parameters must include the parentheses () after the function name:

function functionname()
{
some code
}

Note: Do not forget about the importance of capitals in JavaScript! The word function must be written in
lowercase letters, otherwise a JavaScript error occurs! Also note that you must call a function with the
exact same capitals as in the function name.

The return Statement

The return statement is used to specify the value that is returned from the function.

So, functions that are going to return a value must use the return statement.

Example

The function below should return the product of two numbers (a and b):

function prod(a,b)
{
x=a*b;
return x;
}

When you call the function above, you must pass along two parameters:

product=prod(2,3);

JAVASCRIPT Notes
 Page 20

The returned value from the prod() function is 6, and it will be stored in the variable called product.

The Lifetime of JavaScript Variables

When you declare a variable within a function, the variable can only be accessed within that function.
When you exit the function, the variable is destroyed. These variables are called local variables. You can
have local variables with the same name in different functions, because each is recognized only by the
function in which it is declared.

If you declare a variable outside a function, all the functions on your page can access it. The lifetime of
these variables starts when they are declared, and ends when the page is closed.

What is an Event?

Event Handlers

Event Handlers are JavaScript methods, i.e. functions of objects, that allow us as JavaScript
programmers to control what happens when events occur.

Directly or indirectly, an Event is always the result of something a user does. For example, we've already
seen Event Handlers like onClick and onMouseOver that respond to mouse actions. Another type of
Event, an internal change-of-state to the page (completion of loading or leaving the page). An onLoad
Event can be considered an indirect result of a user action.

Although we often refer to Events and Event Handlers interchangeably, it's important to keep in mind the
distinction between them. An Event is merely something that happens - something that it is initiated by
an Event Handler (onClick, onMouseOver, etc...).

The elements on a page which can trigger events are known as "targets" or "target elements," and we can
easily understand how a button which triggers a Click event is a target element for this event. Typically,
events are defined through the use of Event Handlers, which are bits of script that tell the browser what to
do when a particular event occurs at a particular target. These Event Handlers are commonly written as
attributes of the target element's HTML tag.

The Event Handler for a Click event at a form field button element is quite simple to understand:

<INPUT TYPE="button" NAME="click1" VALUE="Click me for fun!"
 onClick="event_handler_code">

The event_handler_code portion of this example is any valid JavaScript and it will be executed when the
specified event is triggered at this target element. This particular topic will be continued in Incorporating
JavaScripts into your HTML pages.

There are "three different ways" that Event Handlers can be used to trigger Events or Functions.

Method 1 (Link Events):

JAVASCRIPT Notes

 Page 21

Places an Event Handler as an attribute within an tag, like this:

 ...

You can use an Event Handler located within an tag to make either an image or a text link
respond to a mouseover Event. Just enclose the image or text string between the and the
 tags.

Whenever a user clicks on a link, or moves her cursor over one, JavaScript is sent a Link Event. One
Link Event is called onClick, and it gets sent whenever someone clicks on a link. Another link event is
called onMouseOver. This one gets sent when someone moves the cursor over the link.

You can use these events to affect what the user sees on a page. Here's an example of how to use link
events. Try it out, View Source, and we'll go over it.

<A HREF="javascript:void('')"
 onClick="open('index.htm', 'links', 'height=200,width=200');">How to Use Link Events

The first interesting thing is that there are no <SCRIPT> tags. That's because anything that appears in the
quotes of an onClick or an onMouseOver is automatically interpreted as JavaScript. In fact, because
semicolons mark the end of statements allowing you to write entire JavaScripts in one line, you can fit an
entire JavaScript program between the quotes of an onClick. It'd be ugly, but you could do it.

Here are the three lines of interest:

1. Click on me!
2.

Click on me!

3. Click on me!

In the first example we have a normal <A> tag, but it has the magic onClick="" element, which says,
"When someone clicks on this link, run the little bit of JavaScript between my quotes." Notice, there's
even a terminating semicolon at the end of the alert. Question: is this required? NO.

Let's go over each line:

1. HREF="#" tells the browser to look for the anchor #, but there is no anchor "#", so the browser
reloads the page and goes to top of the page since it couldn't find the anchor.

2. <A HREF="javascript:void('')" tells the browser not to go anywhere - it "deadens" the link when
you click on it. HREF="javascript: is the way to call a function when a link (hyperlink or an
HREFed image) is clicked.

3. HREF="javascript:alert('Ooo, do it again!')" here we kill two birds with one stone. The default
behavior of a hyperlink is to click on it. By clicking on the link we call the window Method alert()
and also at the same time "deaden" the link.

JAVASCRIPT Notes

Page 22

The next line is

Mouse over me!

This is just like the first line, but it uses an onMouseOver instead of an onClick.

Method 2 (Actions within FORMs):

The second technique we've seen for triggering a Function in response to a mouse action is to place an
onClick Event Handler inside a button type form element, like this:

<FORM>
 <INPUT TYPE="button" onClick="doSomething()">
</FORM>

While any JavaScript statement, methods, or functions can appear inside the quotation marks of an Event
Handler, typically, the JavaScript script that makes up the Event Handler is actually a call to a function
defined in the header of the document or a single JavaScript command. Essentially, though, anything that
appears inside a command block (inside curly braces {}) can appear between the quotation marks.

For instance, if you have a form with a text field and want to call the function checkField() whenever the
value of the text field changes, you can define your text field as follows:

<INPUT TYPE="text" onChange="checkField(this)">

Nonetheless, the entire code for the function could appear in quotation marks rather than a function call:

<INPUT TYPE="text" onChange="if (this.value <= 5) {
 alert("Please enter a number greater than 5");
}">

To separate multiple commands in an Event Handler, use semicolons

<INPUT TYPE="text" onChange="alert(‘Thanks for the entry.’);
 confirm(‘Do you want to continue?’);">

The advantage of using functions as Event Handlers, however, is that you can use the same Event Handler
code for multiple items in your document and, functions make your code easier to read and understand.

Method 3 (BODY onLoad & onUnLoad):

The third technique is to us an Event Handler to ensure that all required objects are defined involve the
onLoad and onUnLoad. These Event Handlers are defined in the <BODY> or <FRAMESET> tag of an
HTML file and are invoked when the document or frameset are fully loaded or unloaded. If you set a flag

JAVASCRIPT Notes

Page 23

within the onLoad Event Handler, other Event Handlers can test this flags to see if they can safely run,
with the knowledge that the document is fully loaded and all objects are defined. For example:

<SCRIPT>

var loaded = false;

function doit() {
 // alert("Everything is \"loaded\" and loaded = " + loaded);
 alert('Everything is "loaded" and loaded = ' + loaded);
}

</SCRIPT>

<BODY onLoad="loaded = true;">
-- OR --
<BODY onLoad="window.loaded = true;">

<FORM>
 <INPUT TYPE="button" VALUE="Press Me"
 onClick="if (loaded == true) doit();">
-- OR --
 <INPUT TYPE="button" VALUE="Press Me"
 onClick="if (window.loaded == true) doit();">
-- OR --
 <INPUT TYPE="button" VALUE="Press Me"
 onClick="if (loaded) doit();">
</FORM>

</BODY>

The onLoad Event Handler is executed when the document or frameset is fully loaded, which means that
all images have been downloaded and displayed, all subframes have loaded, any Java Applets and Plugins
(Navigator) have started running, and so on. The onUnLoad Event Handler is executed just before the
page is unloaded, which occurs when the browser is about to move on to a new page. Be aware that when
you are working with multiple frames, there is no guarantee of the order in which the onLoad Event
Handler is invoked for the various frames, except that the Event Handlers for the parent frame is invoked
after the Event Handlers of all its children frames -- This will be discussed in detail in Week 8.

Setting the bgColor Property

The first example allows the user to change the color by clicking buttons, while the second example
allows you to change colors by using drop down boxes.

Event Handlers

JAVASCRIPT Notes

Page 24

EVENT DESCRIPTION

onAbort the user cancels loading of an image

onBlur
input focus is removed from a form element (when the user clicks outside the field) or
focus is removed from a window

onClick the user clicks on a link or form element

onChange the value of a form field is changed by the user

onError an error happens during loading of a document or image

onFocus input focus is given to a form element or a window

onLoad once a page is loaded, NOT while loading

onMouseOut the user moves the pointer off of a link or clickable area of an image map

onMouseOver the user moves the pointer over a hypertext link

onReset the user clears a form using the Reset button

onSelect the user selects a form element’s field

onSubmit a form is submitted (ie, when the users clicks on a submit button)

onUnload the user leaves a page

Note: Input focus refers to the act of clicking on or in a form element or field. This can be done by
clicking in a text field or by tabbing between text fields.

Which Event Handlers Can Be Used

OBJECT EVENT HANDLERS AVAILABLE

Button element onClick, onMouseOver

Checkbox onClick

Clickable ImageMap area onClick, onMouseOver, onMouseOut

Document onLoad, onUnload, onError

Form onSubmit, onReset

Framesets onBlur, onFocus

Hypertext link onClick, onMouseOver, onMouseOut

Image onLoad, onError, onAbort

JAVASCRIPT Notes

 Page 25

Radio button onClick

Reset button onClick

Selection list onBlur, onChange, onFocus

Submit button onClick

TextArea element onBlur, onChange, onFocus, onSelect

Text element onBlur, onChange, onFocus, onSelect

Window onLoad, onUnload, onBlur, onFocus

JavaScript Arrays

An array object is used to create a database-like structure within a script. Grouping data points
(array elements) together makes it easier to access and use the data in a script. There are methods
of accessing actual databases (which are beyond the scope of this series) but here we're talking
about small amounts of data.

An array can be viewed like a
column of data in a spreadsheet. The
name of the array would be the same
as the name of the column. Each
piece of data (element) in the array
is referred to by a number (index),
just like a row number in a column.

An array is an object. Earlier, I said
that an object is a thing, a collection
of properties (array elements, in this
case) grouped together.

You can name an array using the
same format as a variable, a function or an object. Remember our basic rules: The first
character cannot be a number, you cannot use a reserved word, and you cannot use spaces.
Also, be sure to remember that the name of the array object is capitalized, e.g. Array.

The JavaScript interpreter uses numbers to access the collection of elements (i.e. the data) in
an array. Each index number (as it is the number of the data in the array's index) refers to a
specific piece of data in the array, similar to an ID number. It's important to remember that
the index numbering of the data starts at "0." So, if you have 8 elements, the first element
will be numbered "0" and the last one will be "7."

Elements can be of any type: character string, integer, Boolean, or even another array. An
array can even have different types of elements within the same array. Each element in the

JAVASCRIPT Notes

Page 26

array is accessed by placing its index number in brackets, i.e. myCar[4]. This would mean
that we are looking for data located in the array myCar which has an index of "4." Since the
numbering of an index starts at "0," this would actually be the fifth index. For instance, in the
following array,

var myCar = new Array("Chev","Ford","Buick","Lincoln","Truck");
alert(myCar[4])

the data point with an index of "4" would be Truck. In this example, the indexes are
numbered as follows: 0=Chev, 1=Ford, 2=Buick, 3=Lincoln, and 4=Truck. When creating
loops, it's much easier to refer to a number than to the actual data itself.

The Size of the Array

The size of an array is determined by either the actual number of elements it contains or by
actually specifying a given size. You don't need to specify the size of the array. Sometimes,
though, you may want to pre-set the size, e.g.:

var myCar = new Array(20);

That would pre-size the array with 20 elements. You might pre-size the array in order to set
aside the space in memory.

Multidimensional Arrays

This type of an array is similar to parallel arrays. In a multidimensional array, instead of
creating two or more arrays in tandem as we did with the parallel array, we create an array
with several levels or "dimensions." Remember our example of a spreadsheet with rows and
columns? This time, however, we have a couple more columns.

Multidimensional arrays can be created in different ways. Let's look at one of these method.
First, we create the main array, which is similar to what we did with previous arrays.
var emailList = new Array();

Next, we create arrays for elements of the main array:

JAVASCRIPT Notes

 Page 27

emailList[0] = new Array("President", "Paul Smith", "psmith@domain.com");
emailList[1] = new Array("Vice President", "Laura Stevens", "lstevens@domain.com");
emailList[2] = new Array("General Manager", "Mary Larsen", "mlarsen@domain.com");
emailList[3] = new Array("Sales Manager", "Bob Lark", "blark@domain.com");

In this script we created "sub arrays" or arrays from another level or "dimension." We used
the name of the main array and gave it an index number (e.g., emailList[0]). Then we created
a new instance of an array and gave it a value with three elements.

In order to access a single element, we need to use a double reference. For example, to get
the e-mail address for the Vice President in our example above, access the third element "[2]"
of the second element "[1]" of the array named emailList.

It would be written like this:

var vpEmail = emailList[1][2]
alert("The address is: "+ vpEmail)

1. We declared a variable, named it emailList, and initialized it with a
value of a new instance of an array.

2. Next, we created an array for each of the elements within the original
array. Each of the new arrays contained three elements.

3. Then we declared a variable named vpEmail and initialized it with the
value of the third element (lstevens@domain.com) of the second
element "[1]" of the array named emailList.

You could also retrieve the information using something like:

var title = emailList[1][0]
var email = emailList[1][2]
alert("The e-mail address for the " + title +" is: " + email)

JAVASCRIPT Notes
 Page 28

Array Properties

length

The length property returns the number of elements in an array. The format is
arrayName.length. The length property is particularly useful when using a loop to cycle
through an array. One example would be an array used to cycle banners:

var bannerImg = new Array();
 bannerImg[0]="image-1.gif";
 bannerImg[1]="image-2.gif";
 bannerImg[2]="image-3.gif";

var newBanner = 0
var totalBan = bannerImg.length

function cycleBan() {
 newBanner++
 if (newBanner == totalBan) {
 newBanner = 0
 }
 document.banner.src=bannerImg[newBanner]
 setTimeout("cycleBan()", 3*1000)
}
window.onload=cycleBan;

This portion is then placed in the body where the banner is to be displayed:

Let's take a look and see what happened here:

JAVASCRIPT Notes

 Page 29

1. On the first line, we created a new instance of the array bannerImg, and gave it three data
elements. (Remember, we are only making a copy of the Array object here.)

2. Next, we created two variables: newBanner, which has a beginning value of zero; and
totalBan, which returns the length of the array (the total number of elements contained in the
array).

3. Then we created a function named cycleBan. This function will be used to create a loop to
cycle the images.

a. We set the newBanner variable to be increased each time the function cycles.
(Review: By placing the increment operator [" ++ "] after the variable [the
"operand"], the variable is incremented only after it returns its current value to the
script. For example, its beginning value is "0", so in the first cycle it will return a
value of "0" to the script and then its value will be increased by "1".)

b. When the value of the newBanner variable is equal to the variable totalBan (which is
the length of the array), it is then reset to "0". This allows the images to start the
cycle again, from the beginning.

c. The next statement uses the Document Object Method (DOM - we'll be taking a look
at that soon) to display the images on the Web page. Remember, we use the dot
operator to access the properties of an object. We also read the statement backwards,
i.e., "take the element from the array bannerImg, that is specified by the current
value of the variable newBanner, and place it in the src attribute located in the
element with the name attribute of banner, which is located in the document object."

d. We then used the setTimeout function to tell the script how long to display each
image. This is always measured in milliseconds so, in this case, the function
cycleBan is called every 3,000 milliseconds (i.e., every 3 seconds).

4. Finally, we used the window.onload statement to execute the function cycleBan as soon as
the document is loaded.

There are a total of five properties for the Array object. In addition to the length property
listed above, the others are:

1. constructor: Specifies the function that creates an object's prototype.
2. index: Only applies to JavaScript arrays created by a regular expression

match.
3. input: Only applies to JavaScript arrays created by a regular expression

match.
4. prototype: Used to add properties or methods.

JAVASCRIPT Notes
 Page 30

The other properties listed here are either more advanced or seldom used. For now, we'll
stick to the basics.

Javascript Object Hierarchy

Hierarchy Objects

Object Properties Methods Event Handlers

Window defaultStatus
frames
opener
parent
scroll
self
status
top
window

alert
blur
close
confirm
focus
open
prompt
clearTimeout
setTimeout

onLoad
onUnload
onBlur
onFocus

History length
forward
go

back none

Navigator appCodeName
appName
appVersion
mimeTypes
plugins
userAgent

javaEnabled none

document alinkColor
anchors
applets
area
bgColor
cookie
fgColor
forms
images
lastModified
linkColor
links
location
referrer
title

clear
close
open
write
writeln

none (the onLoad and onUnload event handlers
belong to the Window object.

JAVASCRIPT Notes

 Page 31

vlinkColor

image border
complete
height
hspace
lowsrc
name
src
vspace
width

none none

form action
elements
encoding
FileUpload
method
name
target

submit
reset

onSubmit
onReset

text defaultValue
name
type
value

focus
blur
select

onBlur
onCharge
onFocus
onSelect

Built-in Objects

Array length join
reverse
sort xx

none

Date none getDate
getDay
getHours
getMinutes
getMonth
getSeconds
getTime
getTimeZoneoffset
getYear
parse
prototype
setDate
setHours
setMinutes
setMonth
setSeconds
setTime

none

JAVASCRIPT Notes
 Page 32

setYear
toGMTString
toLocaleString
UTC

String length
prototype

anchor
big
blink
bold
charAt
fixed
fontColor
fontSize
indexOf
italics
lastIndexOf
link
small
split
strike
sub
substring
sup
toLowerCase
toUpperCase

Window

JavaScript Array Object

The Array object is used to store multiple values in a single variable.

Create an Array

The following code creates an Array object called myCars:

var myCars=new Array();

There are two ways of adding values to an array (you can add as many values as you need to define as
many variables you require).

1:

var myCars=new Array();
myCars[0]="Saab";
myCars[1]="Volvo";
myCars[2]="BMW";

JAVASCRIPT Notes
Page 33

You could also pass an integer argument to control the array's size:

var myCars=new Array(3);
myCars[0]="Saab";
myCars[1]="Volvo";
myCars[2]="BMW";

2:

var myCars=new Array("Saab","Volvo","BMW");

Note: If you specify numbers or true/false values inside the array then the type of variables will be
numeric or Boolean instead of string.

Access an Array

You can refer to a particular element in an array by referring to the name of the array and the index
number. The index number starts at 0.

The following code line:

document.write(myCars[0]);

will result in the following output:

Saab

Modify Values in an Array

To modify a value in an existing array, just add a new value to the array with a specified index number:

myCars[0]="Opel";

Now, the following code line:

document.write(myCars[0]);

will result in the following output:

Opel

JavaScript Date Object

JAVASCRIPT Notes

Page 34

Create a Date Object

The Date object is used to work with dates and times.

The following code create a Date object called myDate:

var myDate=new Date()

Note: The Date object will automatically hold the current date and time as its initial value!

Set Dates

We can easily manipulate the date by using the methods available for the Date object.

In the example below we set a Date object to a specific date (14th January 2010):

var myDate=new Date();
myDate.setFullYear(2010,0,14);

And in the following example we set a Date object to be 5 days into the future:

var myDate=new Date();
myDate.setDate(myDate.getDate()+5);

Note: If adding five days to a date shifts the month or year, the changes are handled automatically by the
Date object itself!

Compare Two Dates

The Date object is also used to compare two dates.

The following example compares today's date with the 14th January 2010:

var myDate=new Date();
myDate.setFullYear(2010,0,14);
var today = new Date();
if (myDate>today)
{
alert("Today is before 14th January 2010");
}
else
{
alert("Today is after 14th January 2010");
}

JavaScript Math Object

JAVASCRIPT Notes
Page 35

Math Object

The Math object allows you to perform mathematical tasks.

The Math object includes several mathematical constants and methods.

Syntax for using properties/methods of Math:

var pi_value=Math.PI;
var sqrt_value=Math.sqrt(16);

Note: Math is not a constructor. All properties and methods of Math can be called by using Math as an
object without creating it.

Mathematical Constants

JavaScript provides eight mathematical constants that can be accessed from the Math object. These are: E,
PI, square root of 2, square root of 1/2, natural log of 2, natural log of 10, base-2 log of E, and base-10 log
of E.

You may reference these constants from your JavaScript like this:

Math.E
Math.PI
Math.SQRT2
Math.SQRT1_2
Math.LN2
Math.LN10
Math.LOG2E
Math.LOG10E

Mathematical Methods

In addition to the mathematical constants that can be accessed from the Math object there are also several
methods available.

The following example uses the round() method of the Math object to round a number to the nearest
integer:

document.write(Math.round(4.7));

The code above will result in the following output:

5

JAVASCRIPT Notes

 Page 36

The following example uses the random() method of the Math object to return a random number between
0 and 1:

document.write(Math.random());

The code above can result in the following output:

0.4218824567728053

The following example uses the floor() and random() methods of the Math object to return a random
number between 0 and 10:

document.write(Math.floor(Math.random()*11));

The code above can result in the following output:

4

JavaScript String Object

String object

The String object is used to manipulate a stored piece of text.

Examples of use:

The following example uses the length property of the String object to find the length of a string:

var txt="Hello world!";
document.write(txt.length);

The code above will result in the following output:

12

The following example uses the toUpperCase() method of the String object to convert a string to
uppercase letters:

var txt="Hello world!";
document.write(txt.toUpperCase());

The code above will result in the following output:

HELLO WORLD!

JAVASCRIPT Notes

Page 37

Window Object

The Window object is the top level object in the JavaScript hierarchy.

The Window object represents a browser window.

A Window object is created automatically with every instance of a <body> or <frameset> tag.

IE: Internet Explorer, F: Firefox, O: Opera.

Window Object Collections

Collection Description IE F O
frames[] Returns all named frames in the window 4 1 9

Window Object Properties

Property Description IE F O
closed Returns whether or not a window has been closed 4 1 9
defaultStatus Sets or returns the default text in the statusbar of the window 4 No 9
document See Document object 4 1 9
history See History object 4 1 9
length Sets or returns the number of frames in the window 4 1 9
location See Location object 4 1 9
name Sets or returns the name of the window 4 1 9
opener Returns a reference to the window that created the window 4 1 9
outerHeight Sets or returns the outer height of a window No 1 No
outerWidth Sets or returns the outer width of a window No 1 No
pageXOffset Sets or returns the X position of the current page in relation to the

upper left corner of a window's display area
No No No

pageYOffset Sets or returns the Y position of the current page in relation to the
upper left corner of a window's display area

No No No

parent Returns the parent window 4 1 9
personalbar Sets whether or not the browser's personal bar (or directories bar)

should be visible

scrollbars Sets whether or not the scrollbars should be visible
self Returns a reference to the current window 4 1 9
status Sets the text in the statusbar of a window 4 No 9
statusbar Sets whether or not the browser's statusbar should be visible
toolbar Sets whether or not the browser's tool bar is visible or not (can only

be set before the window is opened and you must have
UniversalBrowserWrite privilege)

top Returns the topmost ancestor window 4 1 9

JAVASCRIPT Notes

Page 38

Window Object Methods

Method Description IE F O
alert() Displays an alert box with a message and an OK button 4 1 9
blur() Removes focus from the current window 4 1 9
clearInterval() Cancels a timeout set with setInterval() 4 1 9
clearTimeout() Cancels a timeout set with setTimeout() 4 1 9
close() Closes the current window 4 1 9
confirm() Displays a dialog box with a message and an OK and a Cancel

button
4 1 9

createPopup() Creates a pop-up window 4 No No
focus() Sets focus to the current window 4 1 9
moveBy() Moves a window relative to its current position 4 1 9
moveTo() Moves a window to the specified position 4 1 9
open() Opens a new browser window 4 1 9
print() Prints the contents of the current window 5 1 9
prompt() Displays a dialog box that prompts the user for input 4 1 9
resizeBy() Resizes a window by the specified pixels 4 1 9
resizeTo() Resizes a window to the specified width and height 4 1.5 9
scrollBy() Scrolls the content by the specified number of pixels 4 1 9
scrollTo() Scrolls the content to the specified coordinates 4 1 9
setInterval() Evaluates an expression at specified intervals 4 1 9
setTimeout() Evaluates an expression after a specified number of milliseconds 4 1 9

Document Object

The Document object represents the entire HTML document and can be used to access all elements in a
page.

The Document object is part of the Window object and is accessed through the window.document
property.

IE: Internet Explorer, F: Firefox, O: Opera, W3C: World Wide Web Consortium (Internet Standard).

Document Object Collections

Collection Description IE F O W3C
anchors[] Returns a reference to all Anchor objects in the

document
4 1 9 Yes

forms[] Returns a reference to all Form objects in the
document

4 1 9 Yes

images[] Returns a reference to all Image objects in the
document

4 1 9 Yes

links[] Returns a reference to all Area and Link objects in 4 1 9 Yes

JAVASCRIPT Notes

Page 39

the document

Document Object Properties

Property Description IE F O W3C
body Gives direct access to the <body> element
cookie Sets or returns all cookies associated with the

current document
4 1 9 Yes

domain Returns the domain name for the current document 4 1 9 Yes
lastModified Returns the date and time a document was last

modified
4 1 No No

referrer Returns the URL of the document that loaded the
current document

4 1 9 Yes

title Returns the title of the current document 4 1 9 Yes
URL Returns the URL of the current document 4 1 9 Yes

Document Object Methods

Method Description IE F O W3C
close() Closes an output stream opened with the

document.open() method, and displays the
collected data

4 1 9 Yes

getElementById() Returns a reference to the first object with the
specified id

5 1 9 Yes

getElementsByName() Returns a collection of objects with the specified
name

5 1 9 Yes

getElementsByTagName() Returns a collection of objects with the specified
tagname

5 1 9 Yes

open() Opens a stream to collect the output from any
document.write() or document.writeln() methods

4 1 9 Yes

write() Writes HTML expressions or JavaScript code to a
document

4 1 9 Yes

writeln() Identical to the write() method, with the addition
of writing a new line character after each
expression

4 1 9 Yes

History Object

The History object is actually a JavaScript object, not an HTML DOM object.

The History object is automatically created by the JavaScript runtime engine and consists of an array of
URLs. These URLs are the URLs the user has visited within a browser window.

The History object is part of the Window object and is accessed through the window.history property.

IE: Internet Explorer, F: Firefox, O: Opera.

JAVASCRIPT Notes

 Page 40

History Object Properties

Property Description IE F O
length Returns the number of elements in the history list 4 1 9

History Object Methods

Method Description IE F O
back() Loads the previous URL in the history list 4 1 9
forward() Loads the next URL in the history list 4 1 9
go() Loads a specific page in the history list 4 1 9

Form Object

The Form object represents an HTML form.

For each instance of a <form> tag in an HTML document, a Form object is created.

IE: Internet Explorer, F: Firefox, O: Opera, W3C: World Wide Web Consortium (Internet Standard).

Form Object Collections

Collection Description IE F O W3C
elements[] Returns an array containing each element in the form 5 1 9 Yes

Form Object Properties

Property Description IE F O W3C
acceptCharset Sets or returns a list of possible character-sets for the form data No No No Yes
action Sets or returns the action attribute of a form 5 1 9 Yes
enctype Sets or returns the MIME type used to encode the content of a

form
6 1 9 Yes

id Sets or returns the id of a form 5 1 9 Yes
length Returns the number of elements in a form 5 1 9 Yes
method Sets or returns the HTTP method for sending data to the server 5 1 9 Yes
name Sets or returns the name of a form 5 1 9 Yes
target Sets or returns where to open the action-URL in a form 5 1 9 Yes

Standard Properties

Property Description IE F O W3C
className Sets or returns the class attribute of an element 5 1 9 Yes
dir Sets or returns the direction of text 5 1 9 Yes
lang Sets or returns the language code for an element 5 1 9 Yes
title Sets or returns an element's advisory title 5 1 9 Yes

JAVASCRIPT Notes

Page 41

Form Object Methods

Method Description IE F O W3C
reset() Resets the values of all elements in a form 5 1 9 Yes
submit() Submits a form 5 1 9 Yes

Image Object

The Image object represents an embedded image.

For each instance of an tag in an HTML document, an Image object is created.

IE: Internet Explorer, F: Firefox, O: Opera, W3C: World Wide Web Consortium (Internet Standard).

Image Object Properties

Property Description IE F O W3C
align Sets or returns how to align an image according to the

surrounding text
5 1 9 Yes

alt Sets or returns an alternate text to be displayed, if a browser
cannot show an image

5 1 9 Yes

border Sets or returns the border around an image 4 1 9 Yes
complete Returns whether or not the browser has finished loading the

image
4 1 9 No

height Sets or returns the height of an image 4 1 9 Yes
hspace Sets or returns the white space on the left and right side of the

image
4 1 9 Yes

id Sets or returns the id of the image 4 1 9 Yes
isMap Returns whether or not an image is a server-side image map 5 1 9 Yes
longDesc Sets or returns a URL to a document containing a description

of the image
6 1 9 Yes

lowsrc Sets or returns a URL to a low-resolution version of an image 4 1 9 No
name Sets or returns the name of an image 4 1 9 Yes
src Sets or returns the URL of an image 4 1 9 Yes
useMap Sets or returns the value of the usemap attribute of an client-

side image map
5 1 9 Yes

vspace Sets or returns the white space on the top and bottom of the
image

4 1 9 Yes

width Sets or returns the width of an image 4 1 9 Yes

Standard Properties

Property Description IE F O W3C
className Sets or returns the class attribute of an element 5 1 9 Yes
title Sets or returns an element's advisory title 5 1 9 Yes

JAVASCRIPT Notes

 Page 42

Area Object

The Area object represents an area of an image-map (An image-map is an image with clickable regions).

For each instance of an <area> tag in an HTML document, an Area object is created.

IE: Internet Explorer, F: Firefox, O: Opera, W3C: World Wide Web Consortium (Internet Standard).

Area Object Properties

Property Description IE F O W3C
accessKey Sets or returns the keyboard key to access an area 5 1 No Yes
alt Sets or returns an alternate text to be displayed, if a browser

cannot show an area
5 1 9 Yes

coords Sets or returns the coordinates of a clickable area in an image-
map

5 1 9 Yes

hash Sets or returns the anchor part of the URL in an area 4 1 No No
host Sets or returns the hostname and port of the URL in an area 4 1 No No
href Sets or returns the URL of a link in an image-map 4 1 9 Yes
id Sets or returns the id of an area 4 1 9 Yes
noHref Sets or returns whether an area should be active or inactive 5 1 9 Yes
pathname Sets or returns the pathname of the URL in an area 4 1 9 No
protocol Sets or returns the protocol of the URL in an area 4 1 9 No
search Sets or returns the query string part of the URL in an area 4 1 9 No
shape Sets or returns the shape of an area in an image-map 5 1 9 Yes
tabIndex Sets or returns the tab order for an area 5 1 9 Yes
target Sets or returns where to open the link-URL in an area 4 1 9 Yes

Standard Properties

Property Description IE F O W3C
className Sets or returns the class attribute of an element 5 1 9 Yes
dir Sets or returns the direction of text 5 1 9 Yes
lang Sets or returns the language code for an element 5 1 9 Yes
title Sets or returns an element's advisory title 5 1 9 Yes

Navigator Object

The Navigator object is actually a JavaScript object, not an HTML DOM object.

The Navigator object is automatically created by the JavaScript runtime engine and contains information
about the client browser.

IE: Internet Explorer, F: Firefox, O: Opera.

JAVASCRIPT Notes

Page 43

Navigator Object Collections

Collection Description IE F O
plugins[] Returns a reference to all embedded objects in the document 4 1 9

Navigator Object Properties

Property Description IE F O
appCodeName Returns the code name of the browser 4 1 9
appMinorVersion Returns the minor version of the browser 4 No No
appName Returns the name of the browser 4 1 9
appVersion Returns the platform and version of the browser 4 1 9
browserLanguage Returns the current browser language 4 No 9
cookieEnabled Returns a Boolean value that specifies whether cookies are

enabled in the browser
4 1 9

cpuClass Returns the CPU class of the browser's system 4 No No
onLine Returns a Boolean value that specifies whether the system is in

offline mode
4 No No

platform Returns the operating system platform 4 1 9
systemLanguage Returns the default language used by the OS 4 No No
userAgent Returns the value of the user-agent header sent by the client to

the server
4 1 9

userLanguage Returns the OS' natural language setting 4 No 9

Navigator Object Methods

Method Description IE F O
javaEnabled() Specifies whether or not the browser has Java enabled 4 1 9
taintEnabled() Specifies whether or not the browser has data tainting enabled 4 1 9

ZIP CODE VALIDATION

<!-- TWO STEPS TO INSTALL ZIP CODE VALIDATION:

 1. Copy the coding into the HEAD of your HTML document

 2. Add the last code into the BODY of your HTML document -->

<!-- STEP ONE: Paste this code into the HEAD of your HTML document -->

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

<!-- Original: Brian Swalwell -->

JAVASCRIPT Notes

 Page 44

<!-- This script and many more are available free online at -->

<!-- The JavaScript Source!! http://javascript.internet.com -->

<!-- Begin

function validateZIP(field) {

var valid = "0123456789-";

var hyphencount = 0;

if (field.length!=5 && field.length!=10) {

alert("Please enter your 5 digit or 5 digit+4 zip code.");

return false;

}

for (var i=0; i < field.length; i++) {

temp = "" + field.substring(i, i+1);

if (temp == "-") hyphencount++;

if (valid.indexOf(temp) == "-1") {

alert("Invalid characters in your zip code. Please try again.");

return false;

}

if ((hyphencount > 1) || ((field.length==10) && ""+field.charAt(5)!="-")) {

alert("The hyphen character should be used with a properly formatted 5 digit+four zip code, like '12345-
6789'. Please try again.");

return false;

 }

}

return true;

JAVASCRIPT Notes

Page 45

}

// End -->

</script>

</HEAD>

<!-- STEP TWO: Copy this code into the BODY of your HTML document -->

<BODY>

<center>

<form name=zip onSubmit="return validateZIP(this.zip.value)">

Zip: <input type=text size=30 name=zip>

<input type=submit value="Submit">

</form>

</center>

<p><center>

Free JavaScripts provided

by The JavaScript Source

</center><p>

	New Bookmark

